Analytical and Bioanalytical Chemistry

, Volume 407, Issue 8, pp 2337–2342 | Cite as

Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS

  • Andre Zavalin
  • Junhai Yang
  • Kevin Hayden
  • Marvin Vestal
  • Richard M. CaprioliEmail author
Part of the following topical collections:
  1. Mass Spectrometry Imaging


We have achieved protein imaging mass spectrometry capabilities at sub-cellular spatial resolution and at high acquisition speed by integrating a transmission geometry ion source with time of flight mass spectrometry. The transmission geometry principle allowed us to achieve a 1-μm laser spot diameter on target. A minimal raster step size of the instrument was 2.5 μm. Use of 2,5-dihydroxyacetophenone robotically sprayed on top of a tissue sample as a matrix together with additional sample preparation steps resulted in single pixel mass spectra from mouse cerebellum tissue sections having more than 20 peaks in a range 3–22 kDa. Mass spectrometry images were acquired in a standard step raster microprobe mode at 5 pixels/s and in a continuous raster mode at 40 pixels/s.


MALDI Transmission geometry High spatial resolution MS imaging Protein imaging 



The authors would like to thank George Mills (SimulTOF Systems) and Boone Prentice and other members of the Vanderbilt Mass Spectrometry Research Center. This project was supported by grants from National Institutes of Health National Institute of General Medical Sciences NIH/NIGMS P41 GM103391-04 and NIH/NIGMS R01 GM058008-15.


  1. 1.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760CrossRefGoogle Scholar
  2. 2.
    Fenner NC, Daly NR (1966) Laser used for mass analysis. Rev Sci Instrum 37(8):1068–1070. doi: 10.1063/1.1720410 CrossRefGoogle Scholar
  3. 3.
    Hillenkamp F, Unsöld E, Kaufmann R, Nitsche R (1975) A high-sensitivity laser microprobe mass analyzer. Appl Phys 8(4):341–348. doi: 10.1007/BF00898368 CrossRefGoogle Scholar
  4. 4.
    Vogt H, Heinen HJ, Meier S, Wechsung R (1981) LAMMA 500 principle and technical description of the instrument. Z Anal Chem 308(3):195–200. doi: 10.1007/BF00479623 CrossRefGoogle Scholar
  5. 5.
    Dingle T, Griffiths BW, Ruckman JC (1981) LIMA-a laser induced ion mass analyser. Vacuum 31(10–12):571–577. doi: 10.1016/0042-207X(81)90069-5 CrossRefGoogle Scholar
  6. 6.
    Van Vaeck L, Struyf H, Van Roy W, Adams F (1994) Organic and inorganic analysis with laser microprobe mass spectrometry. Part I: Instrumentation and methodology. Mass Spectrom Rev 13(3):189–208. doi: 10.1002/mas.1280130302 CrossRefGoogle Scholar
  7. 7.
    Zavalin A, Todd EM, Rawhouser PD, Yang JH, Norris JL, Caprioli RM (2012) Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom 47(11):1473–1481. doi: 10.1002/Jms.3108 CrossRefGoogle Scholar
  8. 8.
    Thiery-Lavenant G, Zavalin AI, Caprioli RM (2013) Targeted multiplex imaging mass spectrometry in transmission geometry for subcellular spatial resolution. J Am Soc Mass Spectrom 24(4):609–614. doi: 10.1007/s13361-012-0563-z CrossRefGoogle Scholar
  9. 9.
    Spraggins JM, Caprioli R (2011) High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J Am Soc Mass Spectrom 22(6):1022–1031. doi: 10.1007/s13361-011-0121-0 CrossRefGoogle Scholar
  10. 10.
    SimulTOF 200 Combo | SimulTOF Systems.
  11. 11.
    Ritzau S, Hayden K, Vestal M (2012) Improved MALDI-TOF performance with practical implementation of very high post-acceleration. In: 60th ASMS Conference on Mass Spectrometry and Allied Topics, Vancouver, CanadaGoogle Scholar
  12. 12.
    Trim P, Djidja M-C, Atkinson S, Oakes K, Cole L, Anderson DG, Hart P, Francese S, Clench M (2010) Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging. Anal Bioanal Chem 397(8):3409–3419. doi: 10.1007/s00216-010-3874-6 CrossRefGoogle Scholar
  13. 13.
    Zavalin A, Yang J, Caprioli R (2013) Laser beam filtration for high spatial resolution MALDI imaging mass spectrometry. J Am Soc Mass Spectrom 24(7):1153–1156. doi: 10.1007/s13361-013-0638-5 CrossRefGoogle Scholar
  14. 14.
    Fernández-Pradas JM, Colina M, Serra P, Domı J, Morenza JL (2004) Laser-induced forward transfer of biomolecules. Thin Solid Films 453–454:27–30. doi: 10.1016/j.tsf.2003.11.154 CrossRefGoogle Scholar
  15. 15.
    Yang J, Zavalin A, Caprioli R (2014) Highly robust sample preparation with 2,5-dihydroxyacetophenone for MALDI imaging of proteins (2 -70 kDa) at high spatial resolution (5 μm). In: 62th ASMS Conference on Mass Spectrometry and Allied Topics, Baltimore, MDGoogle Scholar
  16. 16.
    Wenzel T, Sparbier K, Mieruch T, Kostrzewa M (2006) 2,5-Dihydroxyacetophenone: a matrix for highly sensitive matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of proteins using manual and automated preparation techniques. Rapid Commun Mass Spectrom 20(5):785-789. doi: 10.1002/rcm.2378
  17. 17.
    Anderson DM, Ablonczy Z, Koutalos Y, Spraggins J, Crouch RK, Caprioli RM, Schey KL (2014) High resolution MALDI imaging mass spectrometry of retinal tissue lipids. J Am Soc Mass Spectrom 25(8):1394-1403. doi:  10.1007/s13361-014-0883-2 CrossRefGoogle Scholar
  18. 18.
    Prophet EB, Armed Forces Institute of Pathology et al (1992) Laboratory methods in histotechnology. American Registry of Pathology, WashingtonGoogle Scholar
  19. 19.
    Burnum KE, Tranguch S, Mi D, Daikoku T, Dey SK, Caprioli RM (2008) Imaging mass spectrometry reveals unique protein profiles during embryo implantation. Endocrinology 149(7):3274–3278. doi: 10.1210/en.2008-0309 CrossRefGoogle Scholar
  20. 20.
    Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B (2005) Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom 16(7):1093–1099. doi: 10.1016/j.jasms.2005.02.026 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andre Zavalin
    • 1
  • Junhai Yang
    • 1
  • Kevin Hayden
    • 2
  • Marvin Vestal
    • 2
  • Richard M. Caprioli
    • 1
    Email author
  1. 1.The Mass Spectrometry Research Center and Department of BiochemistryVanderbilt UniversityNashvilleUSA
  2. 2.SimulTOF SystemsSudburyUSA

Personalised recommendations