Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 12, pp 3437–3448 | Cite as

Using dielectrophoresis to study the dynamic response of single budding yeast cells to Lyticase

  • Shi-Yang TangEmail author
  • Pyshar Yi
  • Rebecca Soffe
  • Sofia Nahavandi
  • Ravi Shukla
  • Khashayar KhoshmaneshEmail author
Research Paper

Abstract

Budding yeast cells are quick and easy to grow and represent a versatile model of eukaryotic cells for a variety of cellular studies, largely because their genome has been widely studied and links can be drawn with higher eukaryotes. Therefore, the efficient separation, immobilization, and conversion of budding yeasts into spheroplast or protoplast can provide valuable insight for many fundamentals investigations in cell biology at a single cell level. Dielectrophoresis, the induced motion of particles in non-uniform electric fields, possesses a great versatility for manipulation of cells in microfluidic platforms. Despite this, dielectrophoresis has been largely utilized for studying of non-budding yeast cells and has rarely been used for manipulation of budding cells. Here, we utilize dielectrophoresis for studying the dynamic response of budding cells to different concentrations of Lyticase. This involves separation of the budding yeasts from a background of non-budding cells and their subsequent immobilization onto the microelectrodes at desired densities down to single cell level. The immobilized yeasts are then stimulated with Lyticase to remove the cell wall and convert them into spheroplasts, in a highly dynamic process that depends on the concentration of Lyticase. We also introduce a novel method for immobilization of the cell organelles released from the lysed cells by patterning multi-walled carbon nanotubes (MWCNTs) between the microelectrodes.

Keywords

Microfluidics Dielectrophoresis Yeast 

Notes

Acknowledgments

K. Khoshmanesh acknowledges the Australian Research Council for funding under Discovery Early Career Researcher Award (DECRA) scheme (project DE120101402). R. Shukla thanks RMIT University for VC Research Fellowship.

Supplementary material

216_2015_8529_MOESM1_ESM.pdf (944 kb)
ESM 1 (PDF 943 kb)
Supplementary Movie 1

(AVI 2845 kb)

Supplementary Movie 2

(AVI 2114 kb)

References

  1. 1.
    Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52(4):536Google Scholar
  2. 2.
    Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR (2011) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res: 40(D1):D700–D705Google Scholar
  3. 3.
    Karathia H, Vilaprinyo E, Sorribas A, Alves R (2011) Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One 6(2):e16015CrossRefGoogle Scholar
  4. 4.
    Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464(7288):513–519CrossRefGoogle Scholar
  5. 5.
    Denoth Lippuner A, Julou T, Barral Y (2014) Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 38(2):300–325CrossRefGoogle Scholar
  6. 6.
    Gershon H, Gershon D (2000) The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mech Ageing Dev 120(1):1–22CrossRefGoogle Scholar
  7. 7.
    Carmona-Gutierrez D, Ruckenstuhl C, Bauer M, Eisenberg T, Büttner S, Madeo F (2010) Cell death in yeast: growing applications of a dying buddy. Cell Death Differ 17(5):733–734CrossRefGoogle Scholar
  8. 8.
    López-Mirabal HR, Winther JR (2008) Redox characteristics of the eukaryotic cytosol. Biochim Biophys Acta (BBA)-Mol Cell Res 1783(4):629–640CrossRefGoogle Scholar
  9. 9.
    Enserink JM (2012) Chemical genetics: budding yeast as a platform for drug discovery and mapping of genetic pathways. Molecules 17(8):9258–9273CrossRefGoogle Scholar
  10. 10.
    Miller-Fleming L, Giorgini F, Outeiro TF (2008) Yeast as a model for studying human neurodegenerative disorders. Biotechnol J 3(3):325–338CrossRefGoogle Scholar
  11. 11.
    Biddick R, Young ET (2009) The disorderly study of ordered recruitment. Yeast 26(4):205–220CrossRefGoogle Scholar
  12. 12.
    Marshall PA, David B, Sanchez LG, Starr ML (2014) Analysis of volutin granule formation in Saccharomyces cerevisiae. Adv Microbiol 4:465–473CrossRefGoogle Scholar
  13. 13.
    Bertl A, Bihler H, Kettner C, Slayman CL (1998) Electrophysiology in the eukaryotic model cell Saccharomyces cerevisiae. Pflugers Arch 436(6):999–1013CrossRefGoogle Scholar
  14. 14.
    Terpitz U, Raimunda D, Westhoff M, Sukhorukov VL, Beaugé L, Bamberg E, Zimmermann D (2008) Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins. Biochim Biophys Acta Biomembr 1778(6):1493–1500CrossRefGoogle Scholar
  15. 15.
    Gietz RD, Woods RA (2001) Genetic transformation of yeast. Biotechniques 30(4):816–831Google Scholar
  16. 16.
    Dunn B, Wobbe CR (2001) Preparation of protein extracts from yeast. Curr Protoc Mol Biol. doi: 10.1002/0471142727.mb1313s23
  17. 17.
    Goldberg S (2008) Mechanical/physical methods of cell disruption and tissue homogenization. In: 2D PAGE: sample preparation and fractionation. Methods Mol Biol 424:3–22Google Scholar
  18. 18.
    Scott JH, Schekman R (1980) Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J Bacteriol 142(2):414–423Google Scholar
  19. 19.
    Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, Philadelphia, PAGoogle Scholar
  20. 20.
    Khoshmanesh K, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2011) Dielectrophoretic platforms for bio-microfluidic systems. Biosens Bioelectron 26(5):1800–1814CrossRefGoogle Scholar
  21. 21.
    Zhang C, Khoshmanesh K, Mitchell A, Kalantar-Zadeh K (2010) Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Anal Bioanal Chem 396(1):401–420CrossRefGoogle Scholar
  22. 22.
    Zellner P, Shake T, Sahari A, Behkam B, Agah M (2013) Off-chip passivated-electrode, insulator-based dielectrophoresis (OπDEP). Anal Bioanal Chem 405(21):6657–6666CrossRefGoogle Scholar
  23. 23.
    Moncada-Hernández H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bioanal Chem 396(5):1805–1816CrossRefGoogle Scholar
  24. 24.
    Bhattacharya S, Chao T-C, Ariyasinghe N, Ruiz Y, Lake D, Ros R, Ros A (2014) Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Anal Bioanal Chem 406(7):1855–1865CrossRefGoogle Scholar
  25. 25.
    Menachery A, Kremer C, Wong PE, Carlsson A, Neale SL, Barrett MP, Cooper JM (2012) Counterflow dielectrophoresis for trypanosome enrichment and detection in blood. Sci Rep 2:775CrossRefGoogle Scholar
  26. 26.
    Yan S, Zhang J, Alici G, Du H, Zhu Y, Li W (2014) Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device. Lab Chip 14:2993–3003CrossRefGoogle Scholar
  27. 27.
    Khoshmanesh K, Akagi J, Nahavandi S, Skommer J, Baratchi S, Cooper JM, Kalantar-Zadeh K, Williams DE, Wlodkowic D (2011) Dynamic analysis of drug-induced cytotoxicity using chip-based dielectrophoretic cell immobilization technology. Anal Chem 83(6):2133–2144CrossRefGoogle Scholar
  28. 28.
    Pethig R, Menachery A, Pells S, De Sousa P (2010) Dielectrophoresis: a review of applications for stem cell research. J Biomed Biotechnol. doi: 10.1155/2010/182581
  29. 29.
    Griffith AW, Cooper JM (1998) Single-cell measurements of human neutrophil activation using electrorotation. Anal Chem 70(13):2607–2612CrossRefGoogle Scholar
  30. 30.
    Khoshmanesh K, Akagi J, Nahavandi S, Kalantar-Zadeh K, Baratchi S, Williams DE, Cooper JM, Wlodkowic D (2011) Interfacing cell-based assays in environmental scanning electron microscopy using dielectrophoresis. Anal Chem 83(8):3217–3221CrossRefGoogle Scholar
  31. 31.
    Tang S-Y, Zhang W, Soffe R, Nahavandi S, Shukla R, Khoshmanesh K (2014) High resolution scanning electron microscopy of cells using dielectrophoresis. PLoS ONE 9(8):e104109. doi: 10.1371/journal.pone.0104109 CrossRefGoogle Scholar
  32. 32.
    Chrimes AF, Khoshmanesh K, Tang S-Y, Wood BR, Stoddart PR, Collins SS, Mitchell A, Kalantar-Zadeh K (2013) In situ SERS probing of nano-silver coated individual yeast cells. Biosens Bioelectron 49:536–541CrossRefGoogle Scholar
  33. 33.
    Huang Y, Holzel R, Pethig R, Wang X-B (1992) Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Phys Med Biol 37(7):1499CrossRefGoogle Scholar
  34. 34.
    López MC, Iglesias FJ, Santamaría C, Domínguez A (1985) Dielectrophoretic behavior of yeast cells: effect of growth sources and cell wall and a comparison with fungal spores. J Bacteriol 162(2):790–793Google Scholar
  35. 35.
    Hölzel R (1997) Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J 73(2):1103–1109CrossRefGoogle Scholar
  36. 36.
    Khoshmanesh K, Baratchi S, Tovar-Lopez FJ, Nahavandi S, Wlodkowic D, Mitchell A, Kalantar-Zadeh K (2012) On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. Microfluid Nanofluid 12(1–4):597–606CrossRefGoogle Scholar
  37. 37.
    Tang S-Y, Zhang W, Baratchi S, Nasabi M, Kalantar-zadeh K, Khoshmanesh K (2013) Modifying dielectrophoretic response of nonviable yeast cells by ionic surfactant treatment. Anal Chem 85(13):6364–6371CrossRefGoogle Scholar
  38. 38.
    Tang S-Y, Zhang W, Yi P, Baratchi S, Kalantar-zadeh K, Khoshmanesh K (2013) Reorientation of microfluidic channel enables versatile dielectrophoretic platforms for cell manipulations. Electrophoresis 34(9–10):1407–1414CrossRefGoogle Scholar
  39. 39.
    Fatoyinbo HO, Hoettges KF, Hughes MP (2008) Rapid-on-chip determination of dielectric properties of biological cells using imaging techniques in a dielectrophoresis dot microsystem. Electrophoresis 29(1):3–10CrossRefGoogle Scholar
  40. 40.
    Shaker M, Colella L, Caselli F, Bisegna P, Renaud P (2014) An impedance-based flow microcytometer for single cell morphology discrimination. Lab Chip 14(14):2548–2555CrossRefGoogle Scholar
  41. 41.
    Iglesias FJ, Lopez M, Santamaría C, Domínguez A (1984) Dielectrophoretic properties of yeast cells dividing by budding and by transversal fission. Biochim Biophys Acta (BBA)-Mol Cell Res 804(2):221–229CrossRefGoogle Scholar
  42. 42.
    Sugaya S, Yamada M, Seki M (2011) Observation of nonspherical particle behaviors for continuous shape-based separation using hydrodynamic filtration. Biomicrofluidics 5(2):024103CrossRefGoogle Scholar
  43. 43.
    Maciej Z, Chalmers JJ (2011) Rare cell separation and analysis by magnetic sorting. Anal Chem 83(21):8050–8056CrossRefGoogle Scholar
  44. 44.
    Wendland B, McCaffery JM, Xiao Q, Emr SD (1996) A novel fluorescence-activated cell sorter-based screen for yeast endocytosis mutants identifies a yeast homologue of mammalian eps15. J Cell Biol 135(6):1485–1500CrossRefGoogle Scholar
  45. 45.
    Ding X, Peng Z, Lin S-CS, Gerid M, Lie S, Li P, Chen Y, Dao M, Suresh S, Huang TJ (2014) Cell separation using tilted-angle standing surface acoustic waves. Proc Natl Acad Sci 111(36):12992–12997CrossRefGoogle Scholar
  46. 46.
    Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Carlo DD (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267CrossRefGoogle Scholar
  47. 47.
    Kalantar-zadeh K, Fry B (2007) Nanotechnology-enabled sensors. Springer, USGoogle Scholar
  48. 48.
    Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci 77(2):990–994CrossRefGoogle Scholar
  49. 49.
    Sebastian Franco JL, Sanchis Otero A, Madronero JR, San Martin SM (2013) Dielectric characterization of the yeast cell budding cycle. Prog Electromagn Res 134:1–22CrossRefGoogle Scholar
  50. 50.
    Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11(12):4241–4257CrossRefGoogle Scholar
  51. 51.
    Jensen RE, Aiken Hobbs AE, Cerveny KL, Sesaki H (2000) Yeast mitochondrial dynamics: fusion, division, segregation, and shape. Microsc Res Tech 51(6):573–583CrossRefGoogle Scholar
  52. 52.
    De Nobel JG, Klis FM, Priem J, Munnik T, Van Den Ende H (1990) The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6(6):491–499CrossRefGoogle Scholar
  53. 53.
    Khoshmanesh K, Zhang C, Nahavandi S, Baratchi S, Mitchell A, Kalantar-zadeh K (2010) Dielectrophoretically patterned carbon nanotubes to sort microparticles. Electrophoresis 31(20):3380–3390CrossRefGoogle Scholar
  54. 54.
    Chung C-C, Cheng I-F, Chen H-M, Kan H-C, Yang W-H, Chang H-C (2012) Screening of antibiotic susceptibility to β-lactam-induced elongation of gram-negative bacteria based on dielectrophoresis. Anal Chem 84(7):3347–3354CrossRefGoogle Scholar
  55. 55.
    Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J Off J Jpn Circ Soc 73(11):1983–1992Google Scholar
  56. 56.
    LaLonde A, Romero-Creel MF, Lapizco-Encinas BH (2014) Assessment of cell viability after manipulation with insulator-based dielectrophoresis. Electrophoresis. doi: 10.1002/elps.201400331 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Faculty of Medicine, Dentistry, & Health SciencesThe University of MelbourneMelbourneAustralia
  3. 3.School of Applied SciencesRMIT UniversityMelbourneAustralia

Personalised recommendations