Analytical and Bioanalytical Chemistry

, Volume 407, Issue 9, pp 2519–2528 | Cite as

Characterization of polar lipids of Listeria monocytogenes by HCD and low-energy CAD linear ion-trap mass spectrometry with electrospray ionization

  • Raju V. V. Tatituri
  • Benjamin J. Wolf
  • Michael B. Brenner
  • John Turk
  • Fong-Fu HsuEmail author
Research Paper


Listeria monocytogenes (L. monocytogenes) is a facultative, Gram-positive, food-borne bacterium, which causes serious infections. Although it is known that lipids play important roles in the survival of Listeria, the detailed structures of these lipids have not been established. In this contribution, we described linear ion-trap multiple-stage mass spectrometric approaches with high-resolution mass spectrometry toward complete structural analysis including the identities of the fatty acid substituents and their position on the glycerol backbone of the polar lipids, mainly phosphatidylglycerol, cardiolipin (CL), and lysyl-CL from L. monocytogenes. The location of the methyl side group along the fatty acid chain in each lipid family was characterized by a charge-switch strategy. This is achieved by first alkaline hydrolysis to release the fatty acid substituents, followed by tandem mass spectrometry on their N-(4-aminomethylphenyl) pyridinium (AMPP) derivatives as the M+ ions. Several findings in this study are unique: (1) we confirm the presence of a plasmalogen PG family that has not been previous reported; (2) an ion arising from a rare internal loss of lysylglycerol residue was observed in the MS2 spectrum of lysyl-CL, permitting its distinction from other CL subfamilies.


HCD Linear ion trap Lysylcardiolipin Anteiso- and iso-branched fatty acids Microbial lipids Lipidomics 



Electrospray ionization-MS


Higher-energy collisional dissociation


High-resolution mass spectrometry


Linear ion trap



This research was supported by US Public Health Service Grants P41-GM103422, P60-DK-20579, P30-DK56341 (Washington University Mass spectrometry Resource) 5R01AI063428-09 and 5T32AR007530-30 (Harvard Medical School) and NIH grant 1R21HL120760-01.

Supplementary material

216_2015_8480_MOESM1_ESM.pdf (28 kb)
ESM 1 (PDF 39 kb)


  1. 1.
    Ryser ET, Marth EH (1999) Listeria, listeriosis, and food safety. Marcel Dekker, NYGoogle Scholar
  2. 2.
    Cole M, Jones M, Holoak C (1990) The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J Appl Microbiol 69:63Google Scholar
  3. 3.
    Walker SJ, Archer P, Banks JG (1990) Growth of Listeria monocytogenes at refrigeration temperatures. J Appl Bacteriol 68(2):157–162CrossRefGoogle Scholar
  4. 4.
    Pal A, Labuza TP, Diez-Gonzalez F (2008) Evaluating the growth of Listeria monocytogenes in refrigerated ready-to-eat frankfurters: influence of strain, temperature, packaging, lactate and diacetate, and background microflora. J Food Prot 71(9):1806–1816Google Scholar
  5. 5.
    Ramaswamy V, Cresence VM, Rejitha JS, Dharsana KS, Vijila HM (2007) Listeria—review of epidemiology and pathogenesis. J Microbiol Immunol Infect 40(1):4–13Google Scholar
  6. 6.
    Gellin BG, Broome CV (1989) Listeriosis. JAMA 261(9):1313–1320. doi: 10.1001/jama.1989.03420090077035 CrossRefGoogle Scholar
  7. 7.
    Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55(3):476–511Google Scholar
  8. 8.
    Mastronicolis SK, Berberi A, Diakogiannis I, Petrova E, Kiaki I, Baltzi T, Xenikakis P (2010) Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH. Antonie Van Leeuwenhoek 98:307–316CrossRefGoogle Scholar
  9. 9.
    Bisbiroulas P, Psylou M, Iliopoulou I, Diakogiannis I, Berberi A, Mastronicolis SK (2011) Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride. Lett Appl Microbiol 52(3):275–280. doi: 10.1111/j.1472-765X.2010.02995.x CrossRefGoogle Scholar
  10. 10.
    Mastronicolis SK, Arvanitis N, Karaliota A, Magiatis P, Heropoulos G, Litos C, Moustaka H, Tsakirakis A, Paramera E, Papastavrou P (2008) Coordinated regulation of cold-induced changes in fatty acids with cardiolipin and phosphatidylglycerol composition among phospholipid species for the food pathogen Listeria monocytogenes. Appl Environ Microbiol 74(14):4543–4549. doi: 10.1128/aem. 02041-07 CrossRefGoogle Scholar
  11. 11.
    Zhu K, Bayles DO, Xiong A, Jayaswal RK, Wilkinson BJ (2005) Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain α-keto acid dehydrogenase. Microbiology 151(2):615–623. doi: 10.1099/mic. 0.27634-0 CrossRefGoogle Scholar
  12. 12.
    Püttmann M, Ade N, Hof H (1993) Dependence of fatty acid composition of Listeria spp. on growth temperature. Res Microbiol 144(4):279–283. doi: 10.1016/0923-2508(93)90012-Q CrossRefGoogle Scholar
  13. 13.
    Mastronicolis SK, Arvanitis N, Karaliota A, Litos C, Stavroulakis G, Moustaka H, Tsakirakis A, Heropoulos G (2005) Cold dependence of fatty acid profile of different lipid structures of Listeria monocytogenes. Food Microbiol 22(2–3):213–219. doi: 10.1016/ CrossRefGoogle Scholar
  14. 14.
    Miladi H, Bakhrouf A, Ammar E (2013) Cellular lipid fatty acid profiles of reference and food isolates Listeria monocytogenes as a response to refrigeration and freezing stress. J Food Biochem 37(2):136–143. doi: 10.1111/j.1745-4514.2011.00607.x CrossRefGoogle Scholar
  15. 15.
    Fischer W, Leopold K (1999) Polar lipids of four Listeria species containing l-lysylcardiolipin, a novel lipid structure, and other unique phospholipids. Int J Syst Bacteriol 49(2):653–662CrossRefGoogle Scholar
  16. 16.
    Gutberlet T, Dietrich U, Bradaczek H, Pohlentz G, Leopold K, Fischer W (2000) Cardiolipin, α-d-glucopyranosyl, and l-lysylcardiolipin from Gram-positive bacteria: FAB MS, monofilm and X-ray powder diffraction studies. Biochim Biophys Acta Biomembr 1463(2):307–322. doi: 10.1016/S0005-2736(99)00214-X CrossRefGoogle Scholar
  17. 17.
    Peter-Katalinic J, Fischer W (1998) α-d-Glucopyranosyl-, d-alanyl- and l-lysylcardiolipin from gram-positive bacteria: analysis by fast atom bombardment mass spectrometry. J Lipid Res 39(11):2286–2292Google Scholar
  18. 18.
    Yang K, Dilthey BG, Gross RW (2013) Identification and quantitation of fatty acid double bond positional isomers: a shotgun lipidomics approach using charge-switch derivatization. Anal Chem. doi: 10.1021/ac402104u Google Scholar
  19. 19.
    Bollinger JG, Rohan G, Sadilek M, Gelb MH (2013) Liquid chromatography/electrospray mass spectrometric detection of fatty acid by charge reversal derivatization with more than 4-orders of magnitude improvement in sensitivity. J Lipid Res 54:3523–3530CrossRefGoogle Scholar
  20. 20.
    Bollinger JG, Thompson W, Lai Y, Oslund RC, Hallstrand TS, Sadilek M, Turecek F, Gelb MH (2010) Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. Anal Chem 82(16):6790–6796. doi: 10.1021/ac100720p CrossRefGoogle Scholar
  21. 21.
    Wang M, Han RH, Han X (2013) Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal Chem 85(19):9312–9320. doi: 10.1021/ac402078p CrossRefGoogle Scholar
  22. 22.
    Cohen Nadia R, Tatituri Raju VV, Rivera A, Watts Gerald FM, Kim Edy Y, Chiba A, Fuchs Beth B, Mylonakis E, Besra Gurdyal S, Levitz Stuart M, Brigl M, Brenner Michael B (2011) Innate recognition of cell wall β-glucans drives invariant natural killer T cell responses against fungi. Cell Host Microbe 10(5):437–450. doi: 10.1016/j.chom.2011.09.011 CrossRefGoogle Scholar
  23. 23.
    Hsu F-F, Turk J (2001) Studies on phosphatidylglycerol with triple quadrupole tandem mass spectrometry with electrospray ionization: fragmentation processes and structural characterization. J Am Soc Mass Spectrom 12(9):1036–1043. doi: 10.1016/s1044-0305(01)00285-9 CrossRefGoogle Scholar
  24. 24.
    Hsu F-F, Turk J (2007) Differentiation of 1-O-alk-1′-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 18(11):2065–2073. doi: 10.1016/j.jasms.2007.08.019 CrossRefGoogle Scholar
  25. 25.
    Hsu F-F, Turk J, Rhoades E, Russell D, Shi Y, Groisman E (2005) Structural characterization of cardiolipin by tandem quadrupole and multiple-stage quadrupole ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 16(4):491–504. doi: 10.1016/j.jasms.2004.12.015 CrossRefGoogle Scholar
  26. 26.
    Hsu F-F, Turk J (2006) Characterization of cardiolipin from Escherichia coli by electrospray ionization with multiple stage quadrupole ion-trap mass spectrometric analysis of [M − 2H + Na] – ions. J Am Soc Mass Spectrom 17(3):420–429. doi: 10.1016/j.jasms.2005.11.019 CrossRefGoogle Scholar
  27. 27.
    Hsu F-F, Turk J (2006) Characterization of cardiolipin as the sodiated ions by positive-ion electrospray ionization with multiple stage quadrupole ion-trap mass spectrometry. J Am Soc Mass Spectrom 17(8):1146–1157. doi: 10.1016/j.jasms.2006.04.024 CrossRefGoogle Scholar
  28. 28.
    Hsu F-F, Turk J (2010) Toward total structural analysis of cardiolipins: multiple-stage linear ion-trap mass spectrometry on the [M − 2H + 3Li] + ions. J Am Soc Mass Spectrom 21(11):1863–1869. doi: 10.1016/j.jasms.2010.07.003 Google Scholar
  29. 29.
    Tatituri RVV, Brenner MB, Turk J, Hsu F-F (2012) Structural elucidation of diglycosyl diacylglycerol and monoglycosyl diacylglycerol from Streptococcus pneumoniae by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Mass Spectrom 47(1):115–123. doi: 10.1002/jms.2033 CrossRefGoogle Scholar
  30. 30.
    Guella G, Frassanito R, Mancini I (2003) A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 17(17):1982–1994. doi: 10.1002/rcm.1142 CrossRefGoogle Scholar
  31. 31.
    Hirschberg CB, Kennedy EP (1972) Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. Proc Natl Acad Sci U S A 69:648–651CrossRefGoogle Scholar
  32. 32.
    Botté CY, Deligny M, Roccia A, Bonneau A-L, Saïdani N, Hardré H, Aci S, Yamaryo-Botté Y, Jouhet J, Dubots E, Loizeau K, Bastien O, Bréhélin L, Joyard J, Cintrat J-C, Falconet D, Block MA, Rousseau B, Lopez R, Maréchal E (2011) Chemical inhibitors of monogalactosyldiacylglycerol synthases in Arabidopsis thaliana. Nat Chem Biol 7(11):834–842, CrossRefGoogle Scholar
  33. 33.
    Nakamura Y, Shimojima M, Ohta H, Shimojima K (2010) Biosynthesis and function of monogalactosyldiacylglycerol (MGDG), the signature lipid of chloroplasts. In: The chloroplast: advances in photosynthesis and respiration, vol 31. Springer, New York, pp 185–202CrossRefGoogle Scholar
  34. 34.
    Joyard J, Douce R (1987) Galactolipid synthesis. In: Stumpf PK (ed) The biochemistry of plants, vol 9. Academic, New York, pp 215–274Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Raju V. V. Tatituri
    • 2
  • Benjamin J. Wolf
    • 2
  • Michael B. Brenner
    • 2
  • John Turk
    • 1
  • Fong-Fu Hsu
    • 1
    Email author
  1. 1.Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations