Analytical and Bioanalytical Chemistry

, Volume 407, Issue 7, pp 1925–1935 | Cite as

A practical guide for the design and implementation of the double-spike technique for precise determination of molybdenum isotope compositions of environmental samples

Research Paper

Abstract

The isotopic double-spike method allows for the determination of stable isotope ratios by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with accuracy and precision in the range of ∼0.02 ‰ amu−1, but its adoption has been hindered by the perceived difficulties in double-spike calibration and implementation. To facilitate the implementation of the double-spike approach, an explanation of the calibration and validation of a 97Mo-100Mo double-spike protocol is given in more detail than has been presented elsewhere. The long-term external standard reproducibility is 0.05 ‰ on δ98/95Mo measurements of standards. δ98/95Mo values for seawater and U.S. Geological Survey (USGS) reference materials SDO-1 and BCR-2 measured in this study are 2.13 ± 0.04 ‰ (2 SD, n = 3), 0.79 ± 0.05 ‰ (2 SD, n = 11), and −0.04 ± 0.10 ‰ (2 SD, n = 3) relative to the NIST-SRM-3134. The double-spike method corrects for laboratory and instrumental fractionation which are not accounted for using other mass bias correction methods. Spike/sample molar ratios between 0.4 and 0.8 provide accurate isotope measurements; outside of this range, isotope measurements are inaccurate but corrections are possible when standards and samples are spiked at a similar ratio.

Keywords

Molybdenum Double-spike MC-ICP-MS Stable isotopes Reference material 

Supplementary material

216_2014_8448_MOESM1_ESM.pdf (485 kb)
ESM 1(PDF 485 kb)

References

  1. 1.
    Télouk P, Maréchal N, Albarède F (1999) Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem Geol 156:251–273CrossRefGoogle Scholar
  2. 2.
    Anbar AD, Knab K, Barling J (2001) Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS. Anal Chem 73:1425–1431CrossRefGoogle Scholar
  3. 3.
    Pietruszka AJ, Walker RJ, Candela PA (2006) Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS: an evaluation of matrix effects. Chem Geol 225:121–136CrossRefGoogle Scholar
  4. 4.
    Siebert C, Nägler TF, Kramers JD (2001) Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst 2:2000GS000124CrossRefGoogle Scholar
  5. 5.
    Albarède F, Beard B (2004) Analytical methods for non-traditional isotopes. Rev Mineral Geochem 55:113–152CrossRefGoogle Scholar
  6. 6.
    Miyazaki T, Kimura J-I, Chang Q (2014) Analysis of stable isotope ratios of Ba by double-spike standard-sample bracketing using multiple-collector inductively coupled plasma mass spectrometry. J Anal At Spectrom 29:483–490Google Scholar
  7. 7.
    Ripperger S, Rehkämper M (2007) Precise determination of cadmium isotope fractionation in seawater by double spike MC-ICPMS. Geochim Cosmochim Acta 71:631–642CrossRefGoogle Scholar
  8. 8.
    Bonnand P, Parkinson IJ, James RH et al (2011) Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS. J Anal At Spectrom 26:528–535Google Scholar
  9. 9.
    Mead C, Johnson TM (2010) Hg stable isotope analysis by the double-spike method. Anal Bioanal Chem 397:1529–1538CrossRefGoogle Scholar
  10. 10.
    Heumann KG, Gallus SM, Rädlinger G, Vogl J (1998) Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J Anal At Spectrom 13:1001–1008CrossRefGoogle Scholar
  11. 11.
    Makishima A, Nagender Nath B, Nakamura E (2007) Precise determination of Pb isotope ratios by simple double spike MC-ICP-MS technique without Tl addition. J Anal At Spectrom 22:407–410Google Scholar
  12. 12.
    Creech J, Baker J, Handler M et al (2013) Platinum stable isotope ratio measurements by double-spike multiple collector ICPMS. J Anal At Spectrom 28:853–865Google Scholar
  13. 13.
    Zhu J-M, Johnson TM, Clark SK, Zhu X-K (2008) High precision measurement of selenium isotopic composition by hydride generation multiple collector inductively coupled plasma mass spectrometry with a 74Se-77Se double spike. Chin J Anal Chem 36:1385–1390Google Scholar
  14. 14.
    Bermin J, Vance D, Archer C, Statham PJ (2006) The determination of the isotopic composition of Cu and Zn in seawater. Chem Geol 226:280–297CrossRefGoogle Scholar
  15. 15.
    Russell WA, Papanastassiou DA, Tombrello T (1978) Ca isotope fractionation on the Earth and other solar system materials. Geochim Cosmochim Acta 42:1075–1090CrossRefGoogle Scholar
  16. 16.
    Compston W, Oversby VM (1969) Lead isotopic analysis using a double spike. J Geophys Res 74:4338–4348CrossRefGoogle Scholar
  17. 17.
    Eugster O, Tera F, Wasserberg GJ (1969) Isotopic analyses of barium in meteorites and in terrestrial samples. J Geophys Res 74:3897–3908CrossRefGoogle Scholar
  18. 18.
    Siebert C, Ross A, McManus J (2006) Germanium isotope measurements of high-temperature geothermal fluids using double-spike hydride generation MC-ICP-MS. Geochim Cosmochim Acta 70:3986–3995CrossRefGoogle Scholar
  19. 19.
    Rudge JF, Reynolds BC, Bourdon B (2009) The double spike toolbox. Chem Geol 265:420–431CrossRefGoogle Scholar
  20. 20.
    Albarède F, Télouk P, Blichert-Toft J et al (2004) Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim Cosmochim Acta 68:2725–2744CrossRefGoogle Scholar
  21. 21.
    Malinovsky D, Dunn PJH, Petrov P, Goenaga-Infante H (2014) Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures. Anal Bioanal Chem [online]. doi:10.1007/s00216-014-8112-1 Google Scholar
  22. 22.
    Mayer AJ, Wieser ME (2014) The absolute isotopic composition and atomic weight of molybdenum in SRM 3134 using an isotopic double-spike. J Anal At Spectrom 29:85–94Google Scholar
  23. 23.
    Wen H, Carignan J, Cloquet C et al (2010) Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS: proposition for delta zero and secondary references. J Anal At Spectrom 25:716–721CrossRefGoogle Scholar
  24. 24.
    Goldberg T, Gordon G, Izon G et al (2013) Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. J Anal At Spectrom 28:724–735CrossRefGoogle Scholar
  25. 25.
    Nägler TF, Anbar AD, Archer C et al (2013) Proposal for an international molybdenum isotope measurement standard and data representation. Geostand Geoanal Res 38:149–151Google Scholar
  26. 26.
    Greber ND, Siebert C, Nägler TF, Pettke T (2012) δ98/95Mo values and molybdenum concentration data for NIST SRM 610, 612 and 3134: towards a common protocol for reporting Mo data. Geostand Geoanal Res 36:291–300Google Scholar
  27. 27.
    Siebert C, Nägler TF, von Blanckenburg F, Kramers JD (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett 211:159–171CrossRefGoogle Scholar
  28. 28.
    Hannah JL, Stein HJ, Wieser ME et al (2007) Molybdenum isotope variations in molybdenite: vapor transport and Rayleigh fractionation of Mo. Geology 35:703–706Google Scholar
  29. 29.
    Voegelin AR, Nägler TF, Samankassou E, Villa IM (2009) Molybdenum isotopic composition of modern and carboniferous carbonates. Chem Geol 265:488–498CrossRefGoogle Scholar
  30. 30.
    Wieser ME, De Laeter JR, Varner MD (2007) Isotope fractionation studies of molybdenum. Int J Mass Spectrom 265:40–48CrossRefGoogle Scholar
  31. 31.
    Goldberg T, Archer C, Vance D, Poulton SW (2009) Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim Cosmochim Acta 73:6502–6516CrossRefGoogle Scholar
  32. 32.
    Greber ND, Pettke T, Nägler TF (2014) Magmatic–hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature. Lithos 190–191:104–110CrossRefGoogle Scholar
  33. 33.
    Lane S, Proemse BC, Tennant A, Wieser ME (2013) Concentration measurements and isotopic composition of airborne molybdenum collected in an urban environment. Anal Bioanal Chem 405:2957–2963CrossRefGoogle Scholar
  34. 34.
    Pearce CR, Cohen AS, Parkinson IJ (2009) Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC-ICP-MS. Geostand Geoanal Res 33:219–229CrossRefGoogle Scholar
  35. 35.
    Dahl TW, Anbar AD, Gordon GW et al (2010) The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland. Geochim Cosmochim Acta 74:144–163CrossRefGoogle Scholar
  36. 36.
    Archer C (2007) PhD Thesis: The application of transition metal isotope systems to biogeochemical studies of the early Earth. Royal Holloway University of London, Department of Geology. 342pGoogle Scholar
  37. 37.
    De Laeter JR, Hidaka H, Peiser HS et al (2003) Atomic weights of the elements: review 2000 (IUPAC technical report). Pure Appl Chem 75:683–800CrossRefGoogle Scholar
  38. 38.
    Shiel AE, Barling J, Orians KJ, Weis D (2009) Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios. Anal Chim Acta 633:29–37CrossRefGoogle Scholar
  39. 39.
    Shiel AE, Weis D, Cossa D, Orians KJ (2013) Determining provenance of marine metal pollution in French bivalves using Cd, Zn and Pb isotopes. Geochim Cosmochim Acta 121:155–167CrossRefGoogle Scholar
  40. 40.
    Arnold T, Schönbächler M, Rehkämper M et al (2010) Measurement of zinc stable isotope ratios in biogeochemical matrices by double-spike MC-ICPMS and determination of the isotope ratio pool available for plants from soil. Anal Bioanal Chem 398:3115–3125CrossRefGoogle Scholar
  41. 41.
    Pietruszka AJ, Reznik AD (2008) Identification of a matrix effect in the MC-ICP-MS due to sample purification using ion exchange resin: an isotopic case study of molybdenum. Int J Mass Spectrom 270:23–30CrossRefGoogle Scholar
  42. 42.
    Li J, Zhu X-K, Tang S (2014) High-precision measurements of molybdenum isotopic compositions of geochemical reference materials. Goldschmidt2014 Abstr. 1430Google Scholar
  43. 43.
    Weis D, Kieffer B, Maerschalk C et al (2005) High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem Geophys Geosyst 6:2004GC000852CrossRefGoogle Scholar
  44. 44.
    John SG (2012) Optimizing sample and spike concentrations for isotopic analysis by double-spike ICPMS. J Anal At Spectrom 27:2123–2131Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Pacific Centre for Isotopic and Geochemical Research (PCIGR), Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations