Analytical and Bioanalytical Chemistry

, Volume 407, Issue 14, pp 3883–3897 | Cite as

Review of plasmonic fiber optic biochemical sensors: improving the limit of detection

  • Christophe Caucheteur
  • Tuan Guo
  • Jacques AlbertEmail author
Part of the following topical collections:
  1. Direct Optical Detection


This paper presents a brief overview of the technologies used to implement surface plasmon resonance (SPR) effects into fiber-optic sensors for chemical and biochemical applications and a survey of results reported over the last ten years. The performance indicators that are relevant for such systems, such as refractometric sensitivity, operating wavelength, and figure of merit (FOM), are discussed and listed in table form. A list of experimental results with reported limits of detection (LOD) for proteins, toxins, viruses, DNA, bacteria, glucose, and various chemicals is also provided for the same time period. Configurations discussed include fiber-optic analogues of the Kretschmann–Raether prism SPR platforms, made from geometry-modified multimode and single-mode optical fibers (unclad, side-polished, tapered, and U-shaped), long period fiber gratings (LPFG), tilted fiber Bragg gratings (TFBG), and specialty fibers (plastic or polymer, microstructured, and photonic crystal fibers). Configurations involving the excitation of surface plasmon polaritons (SPP) on continuous thin metal layers as well as those involving localized SPR (LSPR) phenomena in nanoparticle metal coatings of gold, silver, and other metals at visible and near-infrared wavelengths are described and compared quantitatively.

Graphical Abstract

Artist rendering of light from a tilted fiber Bragg grating probing the cladding surface where  a thin gold film and biofunctional layer are used to detects analytes


Plasmonics Polaritons Photonics Optical fiber Grating Bragg Chemical sensing Biochemical sensing Immunosensing Gold Nanoparticles 



This work was supported by the Belgian F.R.S.-FNRS (Associate research grant of C. Caucheteur), the European Research Council (Starting grant of C. Caucheteur – Grant agreement N° 280161), by the National Natural Science Foundation of China (Starting grant of T. Guo – Grant agreement N° 61205080), the Pearl River Scholar for Young Scientist of China (Starting grant of T. Guo – Grant agreement N° 2011J2200014), and by the Natural Sciences and Engineering Research Council of Canada.


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, New YorkGoogle Scholar
  2. 2.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, BerlinGoogle Scholar
  3. 3.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New YorkGoogle Scholar
  4. 4.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuator B Chem 54:3Google Scholar
  5. 5.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528Google Scholar
  6. 6.
    Homola J (2006) Surface plasmon resonance based sensors. Springer, New YorkGoogle Scholar
  7. 7.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462Google Scholar
  8. 8.
    Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8Google Scholar
  9. 9.
    Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7:1118Google Scholar
  10. 10.
    Gupta BD, Verma RK (2009) Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. J Sens 1:1Google Scholar
  11. 11.
    Baldini F, Brenci M, Chiavaioli F, Giannetti A, Trono C (2012) Optical fibre gratings as tools for chemical and biochemical sensing. Anal Bioanal Chem 402:109Google Scholar
  12. 12.
    Wang XD, Wolfbeis OS (2013) Fiber-optic chemical sensors and biosensors (2008-2012). Anal Chem 85:487Google Scholar
  13. 13.
    Piliarik M, Homola J (2009) Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express 17:16505Google Scholar
  14. 14.
    Shalabney A, Abdulhalim I (2011) Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 5:571Google Scholar
  15. 15.
    Gedig E (2008) Surface chemistry in SPR technology. In: Schasfoort RBM, Tudos AJ (eds) Handbook of surface plasmon resonance. The Royal Society of Chemistry, London, Chap 6Google Scholar
  16. 16.
    Markowicz P, Law W, Baev A, Prasad P, Patskovsky S, Kabashin A (2007) Phase-sensitive time-modulated surface plasmon resonance polarimetry for wide dynamic range biosensing. Opt Express 15:1745Google Scholar
  17. 17.
    Haes AJ, Van Duyne RP (2004) A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 379:920Google Scholar
  18. 18.
    Offermans P, Shaafsma MC, Rodriguez SRK, Zhang Y, Crego-Calama M, Brongersma SH, Rivas JG (2011) Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5:5151Google Scholar
  19. 19.
    Dwivedi YS, Sharma AK, Gupta BD (2008) Influence of design parameters on the performance of a surface plasmon sensor based fiber optic sensor. Plasmonics 3:79Google Scholar
  20. 20.
    Gentleman DJ, Booksh KS (2006) Determining salinity using a multimode fiber optic surface plasmon resonance dip-probe. Talanta 68:504Google Scholar
  21. 21.
    Pollet J, Delport F, Dinh Tran Thi, Wevers M, Lammertyn J (2008) Aptamer-based surface plasmon resonance probe. IEEE Sens:1187–1190. doi: 10.1109/ICSENS.2008.4716654
  22. 22.
    Kanso M, Cuenot S, Louarn G (2008) Sensitivity of optical fiber sensor based on surface plasmon resonance: modeling and experiments. Plasmonics 3:49Google Scholar
  23. 23.
    Lin H, Tsao Y, Tsai W, Yang Y, Yan T, Sheu B (2007) Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED. Sens Actuator A Phys 138:299Google Scholar
  24. 24.
    Slavík R, Homola J, Brynda E (2002) A miniature fiber optic surface plasmon resonance sensor for fast detection of Staphylococcal enterotoxin B. Biosens Bioelectron 17:591Google Scholar
  25. 25.
    Allsop T, Neal R, Mou C, Brown P, Rehman S, Kalli K, Webb DJ, Mapps D, Bennion I (2009) Multilayered coated infra-red surface plasmon resonance fibre sensors for aqueous chemical sensing. Opt Fiber Technol 15:477Google Scholar
  26. 26.
    Huang C, Jen C, Chao T, Wu W, Li W, Chau L (2009) A novel design of grooved fibers for fiber-optic localized plasmon resonance biosensors. Sensors 9:6456Google Scholar
  27. 27.
    Wu W, Jen C, Tsao T, Shen W, Cheng C, Chen C, Tang J, Li W, Chau L (2009) U-shaped fiber optics fabricated with a femtosecond laser and integrated into a localized plasmon resonance biosensor. Proc DTIP, Rome, ItalyGoogle Scholar
  28. 28.
    Ahn JH, Seong TY, Kim WM, Lee TS, Kim I, Lee K (2012) Fiber-optic waveguide coupled surface plasmon resonance sensor. Opt Express 20:21729Google Scholar
  29. 29.
    Esteban Ó, Naranjo FB, Díaz-Herrera N, Valdueza-Felip S, Navarrete M, González-Cano A (2011) High-sensitive SPR sensing with indium nitride as a dielectric overlay of optical fibers. Sens Actuator B Chem 158:372Google Scholar
  30. 30.
    Navarrete M, Díaz-Herrera N, González-Cano A, Esteban Ó (2014) Surface plasmon resonance in the visible region in sensors based on tapered optical fibers. Sens Actuator B Chem 190:881Google Scholar
  31. 31.
    Chang Y, Chen Y, Kuo H, Wei P (2014) Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip. J Biomed Opt 11:014032Google Scholar
  32. 32.
    Lin H, Huang C, Cheng G, Chen N, Chui H (2012) Tapered optical fiber sensor based on localized surface plasmon resonance. Opt Express 20:21693Google Scholar
  33. 33.
    Wieduwilt T, Kirsch K, Dellith J, Willsch R, Bartelt H (2013) Optical fiber micro-taper with circular symmetric gold coating for sensor applications based on surface plasmon resonance. Plasmonics 8:545Google Scholar
  34. 34.
    Verma RK, Sharma AK, Gupta BD (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281:1486Google Scholar
  35. 35.
    Iga M, Seki A, Watanabe K (2004) Hetero-core structured fiber optic surface plasmon resonance sensor with silver film. Sens Actuator B Chem 101:368Google Scholar
  36. 36.
    Takagi K, Sasaki H, Seki A, Watanabe K (2010) Surface plasmon resonances of a curved hetero-core optical fiber sensor. Sens Actuator A Phys 161:1Google Scholar
  37. 37.
    Sai VVR, Kundu T, Mukherji S (2009) Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor. Biosens Bioelectron 24:2804Google Scholar
  38. 38.
    Nguyen H, Sidiroglou F, Collins SF, Davis TJ, Roberts A, Baxter GW (2013) A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures. Appl Phys Lett 103:193116Google Scholar
  39. 39.
    Consales M, Ricciardi A, Crescitelli A, Esposito E, Cutolo A, Cusano A (2012) Lab-on-fiber technology: toward multifunctional optical nanoprobes. ACS Nano 6:3163Google Scholar
  40. 40.
    Jeong HH, Erdene N, Lee SK, Jeong DH, Park JH (2011) Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma. Opt Eng 50:124405Google Scholar
  41. 41.
    Lin Y, Zou Y, Mo Y, Guo J, Lindquist RG (2010) E-Beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing. Sensors 10:9397Google Scholar
  42. 42.
    Iadicicco A, Cusano A, Campopiano S, Cutolo A (2005) Thinned fiber Bragg gratings as refractive index sensors. IEEE Sens J 5:1288Google Scholar
  43. 43.
    Nemova G, Kashyap R (2006) Fiber-Bragg-grating-assisted surface plasmon-polariton sensor. Opt Lett 31:2118Google Scholar
  44. 44.
    Schuster T, Herschel R, Neumann N, Schäffer CG (2012) Miniaturized long-period fiber grating assisted surface plasmon resonance sensor. J Lightwave Technol 30:1003Google Scholar
  45. 45.
    Albert J, Shao LY, Caucheteur C (2013) Tilted fiber Bragg grating sensors. Laser Photonics Rev 7:83Google Scholar
  46. 46.
    Shevchenko Y, Albert J (2007) Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett 32:211Google Scholar
  47. 47.
    Alam MZ, Albert J (2013) Selective excitation of radially and azimuthally polarized optical fiber cladding modes. J Lightwave Technol 31:3167Google Scholar
  48. 48.
    Shevchenko Y, Chen C, Dakka MA, Albert J (2010) Polarization-selective grating excitation of plasmons in cylindrical optical fibers. Opt Lett 35:637Google Scholar
  49. 49.
    Caucheteur C, Chen C, Voisin V, Berini P, Albert J (2011) A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors. Appl Phys Lett 99:041118Google Scholar
  50. 50.
    Caucheteur C, Shevchenko Y, Shao LY, Wuilpart M, Albert J (2011) High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt Express 19:1656Google Scholar
  51. 51.
    Caucheteur C, Voisin V, Albert J (2013) Polarized spectral combs probe optical fiber surface plasmons. Opt Express 21:3055Google Scholar
  52. 52.
    Baiad MD, Gagné M, Madore W, De Montigny E, Godbout N, Boudoux C, Kashyap R (2013) Surface plasmon resonance sensor interrogation with a double-clad fiber coupler and cladding modes excited by a tilted fiber Bragg grating. Opt Lett 38:4911Google Scholar
  53. 53.
    Bialiayeu A, Bottomley A, Prezgot D, Ianoul A, Albert J (2012) Plasmon-enhanced refractometry using silver nanowire coating on tilted fibre Bragg gratings. Nanotechnol 23:444012Google Scholar
  54. 54.
    Piliarik M, Homola J, Manı́ková Z, Čtyroký J (2003) Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sens Actuator B Chem 90:236Google Scholar
  55. 55.
    Hassani A, Skorobogatiy M (2007) Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J Opt Soc Am B Opt Phys 24:1423Google Scholar
  56. 56.
    Hautakorpi M, Mattinen M, Ludvigsen H (2008) Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Express 16:8427Google Scholar
  57. 57.
    Lee HW, Schmidt M, Tyagi HK, Sempere LP, Russell PS (2008) Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl Phys Lett 93:111102Google Scholar
  58. 58.
    Boehm J, Francois A, Ebendorff-Heidepriem H, Monro TM (2011) Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors. Plasmonics 6:133Google Scholar
  59. 59.
    Tan Z, Li X, Chen Y, Fan P (2014) Improving the sensitivity of fiber surface plasmon resonance sensor by filling liquid in a hollow core photonic crystal fiber. Plasmonics 9:167Google Scholar
  60. 60.
    Wong WC, Chan CC, Boo JL, Teo ZY, Tou ZQ, Yang HB (2013) Photonic crystal fiber surface plasmon resonance biosensor based on protein G immobilization. IEEE J Sel Top Quantum Electron 19:4602107Google Scholar
  61. 61.
    Lu Y, Hao C, Wu B, Huang X, Wen W, Fu X, Yao J (2012) Grapefruit fiber filled with silver nanowires surface plasmon resonance sensor in aqueous environments. Sensors 12:12016Google Scholar
  62. 62.
    Gao D, Guan C, Wen Y, Zhong X, Yuan L (2014) Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt Commun 313:94Google Scholar
  63. 63.
    Cennamo N, D'Agostino G, Dona A, Dacarro G, Pallavicini P, Pesavento M, Zeni L (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors 13:14676Google Scholar
  64. 64.
    Cennamo N, D’Agostino G, Pesavento M, Zeni L (2014) High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine. Sens Actuator B Chem 191:529Google Scholar
  65. 65.
    Lu Y, Hao C, Wu B, Musideke M, Duan L, Wen W, Yao J (2013) Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers. Sensors 13:956Google Scholar
  66. 66.
    Albert J, Lepinay S, Caucheteur C, Derosa MC (2013) High resolution grating-assisted surface plasmon resonance fiber optic aptasensor. Methods 63:239Google Scholar
  67. 67.
    Svorcik V, Siegel J, Sutta P, Mistrik J, Janicek P, Worsch P, Kolská Z (2011) Annealing of gold nanostructures sputtered on glass substrate. Appl Phys A 102:605Google Scholar
  68. 68.
    Sennett RS, Scott GD (1950) The structure of evaporated metal films and their optical properties. J Opt Soc Am A Opt Image Sci Vis 40:203Google Scholar
  69. 69.
    Cohen RW, Cody GD, Coutts MD, Abeles B (1973) Optical properties of granular silver and gold films. Phys Rev B 8:3689Google Scholar
  70. 70.
    Tu JJ, Homes CC, Strongin M (2003) Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition. Phys Rev Lett 90:017402Google Scholar
  71. 71.
    Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Express 1:1090Google Scholar
  72. 72.
    Lee H, Kim H, Park J, Jeong DH, Lee S (2010) Effects of surface density and size of gold nanoparticles in a fiber-optic localized surface plasmon resonance sensor and its application to peptide detection. Measurement Sci Technol 21:085805Google Scholar
  73. 73.
    Tou ZQ, Chan CC, Wong WC, Chen LH (2013) Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance. IEEE Photonics Technol Lett 25:556Google Scholar
  74. 74.
    Lin Y, Zou Y, Lindquist RG (2011) A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing. Biomed Opt Express 2:478Google Scholar
  75. 75.
    Sciacca B, Monro TM (2014) Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber. Langmuir 30:946Google Scholar
  76. 76.
    Renoirt J, Debliquy M, Albert J, Ianoul A, Caucheteur C (2014) Surface plasmon resonances in oriented silver nanowire coatings on optical fibers. J Phys Chem C 118:11035Google Scholar
  77. 77.
    Ebersole RC, Miller JA, Moran JR, Ward MD (1990) Spontaneously formed functionally active avidin monolayers on metal surfaces: a strategy for immobilizing biological reagents and design of piezoelectric biosensors. J Am Chem Soc 112:3239Google Scholar
  78. 78.
    Baliyan A, Bhatia P, Gupta BD, Sharma EK, Kumari A, Gupta R (2013) Surface plasmon resonance based fiber optic sensor for the detection of triacylglycerides using gel entrapment technique. Sens Actuator B Chem 188:917Google Scholar
  79. 79.
    Bhatia P, Gupta BD (2012) Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sens Actuator B Chem 161:434Google Scholar
  80. 80.
    Verma R, Srivastava SK, Gupta BD (2012) Surface-plasmon-resonance-based fiber-optic sensor for the detection of low-density lipoprotein. IEEE Sens J 12:3460Google Scholar
  81. 81.
    Singh S, Mishra SK, Gupta BD (2013) SPR based fibre optic biosensor for phenolic compounds using immobilization of tyrosinase in polyacrylamide gel. Sens Actuator B Chem 186:388Google Scholar
  82. 82.
    Pollet J, Delport F, Janssen KPF, Tran DT, Wouters J, Verbiest T, Lammertyn J (2011) Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 83:1436Google Scholar
  83. 83.
    Pollet J, Delport F, Janssen KPF, Jans K, Maes G, Pfeiffer H, Wevers M, Lammertyn J (2009) Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosens Bioelectron 25:864Google Scholar
  84. 84.
    Knez K, Janssen KPF, Spasic D, Declerck P, Vanysacker L, Denis C, Tran DT, Lammertyn J (2013) Spherical nucleic acid enhanced FO-SPR DNA melting for detection of mutations in Legionella pneumophila. Anal Chem 85:1734Google Scholar
  85. 85.
    Knez K, Noppe W, Geukens N, Janssen KPF, Spasic D, Heyligen J, Vriens K, Thevissen K, Cammue BPA, Petrenko V, Ulens C, Deckmyn H, Lammertyn J (2013) Affinity comparison of p3 and p8 peptide displaying bacteriophages using surface plasmon resonance. Anal Chem 85:10075Google Scholar
  86. 86.
    Shevchenko Y, Francis TJ, Blair DAD, Walsh R, DeRosa MC, Albert J (2011) In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal Chem 83:7027Google Scholar
  87. 87.
    Voisin V, Pilate J, Damman P, Mégret M, Caucheteur C (2014) Highly sensitive detection of molecular interactions with plasmonic optical fiber grating sensors. Biosens Bioelectron 51:249Google Scholar
  88. 88.
    Shevchenko Y, Camci-Unal G, Cuttica DF, Dokmeci MR, Albert J, Khademhosseini A (2014) Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosens Bioelectron 56:359Google Scholar
  89. 89.
    Sciacca B, François A, Hoffmann P, Monro TM (2013) Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber. Sens Actuator B Chem 183:454Google Scholar
  90. 90.
    Jeong H, Erdene N, Park J, Jeong D, Lee H, Lee S (2013) Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor. Biosens Bioelectron 39:346Google Scholar
  91. 91.
    Sanders M, Lin Y, Wei J, Bono T, Lindquist RG (2014) An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers. Biosens Bioelectron 61:95Google Scholar
  92. 92.
    Srivastava SK, Arora V, Sapra S, Gupta BD (2012) Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose. Plasmonics 7:261Google Scholar
  93. 93.
    Chiang C, Hsieh M, Huang K, Chau L, Chang C, Lyu S (2010) Fiber-optic particle plasmon resonance sensor for detection of interleukin-1β in synovial fluids. Biosens Bioelectron 26:1036Google Scholar
  94. 94.
    Cao J, Tu MH, Sun T, Grattan KTV (2013) Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens Actuator B Chem 181:611Google Scholar
  95. 95.
    Huang Y, Chiang C, Li C, Chang T, Chiang C, Chau L, Huang K, Wu C, Wang S, Lyu S (2013) Quantification of tumor necrosis factor-α and matrix metalloproteinases-3 in synovial fluid by a fiber-optic particle plasmon resonance sensor. Analyst 138:4599Google Scholar
  96. 96.
    Lin H, Huang C, Lu S, Kuo I, Chau L (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371Google Scholar
  97. 97.
    Huang JC, Chang Y, Chen K, Su L, Lee C, Chen C, Chen YA, Chou C (2009) Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in human serum using a localized surface plasmon coupled fluorescence fiber-optic biosensor. Biosens Bioelectron 25:320Google Scholar
  98. 98.
    Lepinay S, Staff A, Ianoul A, Albert J (2014) Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles. Biosens Bioelectron 52:337Google Scholar
  99. 99.
    Candiani A, Bertucci A, Giannetti S, Konstantaki M, Manicardi A, Pissadakis S, Cucinotta A, Corradini R, Selleri S (2013) Label-free DNA biosensor based on peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating. J Biomed Opt 18:057004Google Scholar
  100. 100.
    Bhatia P, Gupta BD (2013) Surface plasmon resonance based fiber optic ammonia sensor utilizing Bromocresol purple. Plasmonics 8:779Google Scholar
  101. 101.
    Perrotton C, Westerwaal RJ, Javahiraly N, Slaman M, Schreuders H, Dam B, Meyrueis P (2013) A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance. Opt Express 21:382Google Scholar
  102. 102.
    Pfeifer KB, Thornberg SM (2010) Surface plasmon sensing of gas phase contaminants using a single-ended multiregion optical fiber. IEEE Sens J 10:1360Google Scholar
  103. 103.
    Bharadwaj R, Mukherji S (2014) Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours. Sens Actuator B Chem 192:804Google Scholar
  104. 104.
    Wu Y, Yao B, Zhang A, Rao YJ, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang KS (2014) Graphene-coated microfiber Bragg grating for high sensitivity gas sensing. Opt Letters 39:1235Google Scholar
  105. 105.
    Kim JA, Hwang T, Dugasani SR, Amin R, Kulkarni A, Park SH, Kim T (2013) Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications. Sens Actuator B Chem 187:426Google Scholar
  106. 106.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christophe Caucheteur
    • 1
  • Tuan Guo
    • 2
  • Jacques Albert
    • 3
    Email author
  1. 1.Electromagnetism and Telecommunication DepartmentUniversity of MonsMonsBelgium
  2. 2.Institute of Photonics TechnologyJinan UniversityGuangzhouChina
  3. 3.Department of ElectronicsCarleton UniversityOttawaCanada

Personalised recommendations