Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 20, pp 5923–5937 | Cite as

Characterisation of ship diesel primary particulate matter at the molecular level by means of ultra-high-resolution mass spectrometry coupled to laser desorption ionisation—comparison of feed fuel, filter extracts and direct particle measurements

  • Christopher P. Rüger
  • Martin Sklorz
  • Theo Schwemer
  • Ralf Zimmermann
Research Paper
Part of the following topical collections:
  1. Aerosols and Health

Abstract

In this study, positive-mode laser desorption-ionisation ultra-high-resolution mass spectrometry (LDI-FT-ICR-MS) was applied to study combustion aerosol samples obtained from a ship diesel engine as well as the feed fuel, used to operate the engine. Furthermore, particulate matter was sampled from the exhaust tube using an impactor and analysed directly from the impaction foil without sample treatment. From the high percentage of shared sum formula as well as similarities in the chemical spread of aerosol and heavy fuel oil, results indicate that the primary aerosol mainly consists of survived, unburned species from the feed fuel. The effect of pyrosynthesis could be observed and was slightly more pronounced for the CH-class compared to other compound classes, but in summary not dominant. Alkylation pattern as well as the aromaticity distribution, using the double bond equivalent, revealed a shift towards lower alkylation state for the aerosol. The alkylation pattern of the most dominant series revealed a higher correlation between different aerosol samples than between aerosol and feed samples. This was confirmed by cluster analysis. Overall, this study shows that LDI-FT-ICR-MS can be successfully applied for the analysis of combustion aerosol at the molecular level and that sum formula information can be used to identify chemical differences between aerosol and fuel as well as between different size fractions of the particulate matter.

Keywords

Ship emissions High-resolution mass spectrometry (HR-MS) Heavy fuel oil Aerosol Particulate matter (PM) Laser desorption ionisation (LDI) 

Notes

Acknowledgments

Funding by the Helmholtz Foundation for the HICE virtual institute (www.hice-vi.eu) and the state Mecklenburg-Vorpommern scholarship programme, and funding by the European Social Funds (ESF) are gratefully acknowledged. Furthermore, we thank the DFG for funding the Bruker SolariX FT-ICR-MS. The authors thank Jürgen Orasche and the members of the engineering team for the opportunity and assistance by taking the particle samples. Special thanks to Hendryk Czech for fruitful discussions concerning data analysis and to Elize Smit and Juana Maria Parra Contreras for reviewing the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

216_2014_8408_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1147 kb)

References

  1. 1.
    Intergovernmental Panel on Climate Change (2014) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the IPCC Fifth Assessment Report. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Field CB, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, L.L. White (2014) IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  3. 3.
    Eyring V (2005) Emissions from international shipping: 1. The last 50 years. J Geophys Res 110(D17)Google Scholar
  4. 4.
    Corbett JJ, Winebrake JJ, Green EH, Kasibhatla P, Eyring V, Lauer A (2007) Mortality from ship emissions: a global assessment. Environ Sci Technol 41(24):8512–8518CrossRefGoogle Scholar
  5. 5.
    Eyring V, Isaksen IS, Berntsen T, Collins WJ, Corbett JJ, Endresen O, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2010) Transport impacts on atmosphere and climate: shipping. Atmospheric Environment 44(37):4735–4771CrossRefGoogle Scholar
  6. 6.
    Moldanová J, Fridell E, Popovicheva O, Demirdjian B, Tishkova V, Faccinetto A, Focsa C (2009) Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment 43(16):2632–2641CrossRefGoogle Scholar
  7. 7.
    Murphy SM, Agrawal H, Sorooshian A, Padró LT, Gates H, Hersey S, Welch WA, Jung H, Miller JW, Cocker DR, Nenes A, Jonsson HH, Flagan RC, Seinfeld JH (2009) Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea. Environ Sci Technol 43(13):4626–4640CrossRefGoogle Scholar
  8. 8.
    Petzold A, Lauer P, Fritsche U, Hasselbach J, Lichtenstern M, Schlager H, Fleischer F (2011) Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects. Environ Sci Technol 45(24):10394–10400CrossRefGoogle Scholar
  9. 9.
    Popovicheva O, Kireeva E, Shonija N, Zubareva N, Persiantseva N, Tishkova V, Demirdjian B, Moldanová J, Mogilnikov V (2009) Ship particulate pollutants: characterization in terms of environmental implication. J Environ Monit 11(11):2077–2086CrossRefGoogle Scholar
  10. 10.
    Agrawal H, Welch WA, Miller JW, Cocker DR (2008) Emission measurements from a crude oil tanker at sea. Environ Sci Technol 42(19):7098–7103CrossRefGoogle Scholar
  11. 11.
    Agrawal H, Malloy QG, Welch WA, Wayne Miller J, Cocker DR (2008) In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmospheric Environment 42(21):5504–5510CrossRefGoogle Scholar
  12. 12.
    Reda AA, Schnelle-Kreis J, Orasche J, Abbaszade G, Lintelmann J, Arteaga-Salas JM, Stengel B, Rabe R, Harndorf H, Sippula O, Streibel T, Zimmermann R (2014) Gas phase carbonyl compounds in ship emissions: differences between diesel fuel and heavy fuel oil operation. Atmospheric Environment 94:467–478CrossRefGoogle Scholar
  13. 13.
    Moldanová J, Fridell E, Winnes H, Holmin-Fridell S, Boman J, Jedynska A, Tishkova V, Demirdjian B, Joulie S, Bladt H, Ivleva NP, Niessner R (2013) Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas. Atmos Meas Tech 6(12):3577–3596CrossRefGoogle Scholar
  14. 14.
    Sippula O, Stengel B, Sklorz M, Streibel T, Rabe R, Orasche J, Lintelmann J, Michalke B, Abbaszade G, Radischat C, Gröger T, Schnelle-Kreis J, Harndorf H, Zimmermann R (2014) Particle emissions from a marine engine: chemical composition and aromatic emission profiles under various operating conditions. Environ Sci Technol 48(19):11721–11729CrossRefGoogle Scholar
  15. 15.
    Cho Y, Ahmed A, Islam A, Kim S (2014) Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics. Mass Spectrom RevGoogle Scholar
  16. 16.
    Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrometry Reviews 17:1–35CrossRefGoogle Scholar
  17. 17.
    Panda SK, Andersson JT, Schrader W (2009) Characterization of supercomplex crude oil mixtures: what is really in there? Angew Chem Int Ed 48(10):1788–1791CrossRefGoogle Scholar
  18. 18.
    Nizkorodov SA, Laskin J, Laskin A (2011) Molecular chemistry of organic aerosols through the application of high resolution mass spectrometry. Phys Chem Chem Phys 13(9):3612CrossRefGoogle Scholar
  19. 19.
    Kalberer M, Paulsen D, Sax M, Steinbacher M, Dommen J, Prevot ASH, Fisseha R, Weingartner E, Frankevich V, Zenobi R, Baltensperger U (2004) Identification of polymers as major components of atmospheric organic aerosols. Science 303(5664):1659–1662CrossRefGoogle Scholar
  20. 20.
    Ferge T, Mühlberger F, Zimmermann R (2005) Application of infrared laser desorption vacuum-UV single-photon ionization mass spectrometry for analysis of organic compounds from particulate matter filter samples. Anal Chem 77(14):4528–4538CrossRefGoogle Scholar
  21. 21.
    Bente M, Adam T, Ferge T, Gallavardin S, Sklorz M, Streibel T, Zimmermann R (2006) An on-line aerosol laser mass spectrometer with three, easily interchangeable laser based ionisation methods for characterisation of inorganic and aromatic compounds on particles. International Journal of Mass Spectrometry 258(1–3):86–94CrossRefGoogle Scholar
  22. 22.
    Ferge T, Karg E, Schröppel A, Coffee KR, Tobias HJ, Frank M, Gard EE, Zimmermann R (2006) Fast determination of the relative elemental and organic carbon content of aerosol samples by on-line single-particle aerosol time-of-flight mass spectrometry. Environ Sci Technol 40(10):3327–3335CrossRefGoogle Scholar
  23. 23.
    Faccinetto A, Desgroux P, Ziskind M, Therssen E, Focsa C (2011) High-sensitivity detection of polycyclic aromatic hydrocarbons adsorbed onto soot particles using laser desorption/laser ionization/time-of-flight mass spectrometry: an approach to studying the soot inception process in low-pressure flames. Combustion and Flame 158(2):227–239CrossRefGoogle Scholar
  24. 24.
    Dale MJ, Downs O, Costello KF, Wright SJ, Langridge-Smith P, Cape JN (1995) Direct analysis of polycyclic aromatic hydrocarbons in cloud-water aerosol filtrates using laser desorption mass spectrometry. Environmental Pollution 89(2):123–129CrossRefGoogle Scholar
  25. 25.
    Hauler TE, Boesl U, Kaesdorf S, Zimmermann R (2004) Mobile resonance enhanced multiphoton ionisation–time-of-flight mass spectrometer with a novel hybrid laser desorption/molecular beam ion source for rapid detection of aromatic trace compounds from gas phase and solid samples. Journal of Chromatography A 1058(1–2):39–49CrossRefGoogle Scholar
  26. 26.
    Carré V, Aubriet F, Muller J (2005) Analysis of cigarette smoke by laser desorption mass spectrometry. Analytica Chimica Acta 540(2):257–268CrossRefGoogle Scholar
  27. 27.
    Carré V, Vernex-Loset L, Krier G, Manuelli P, Muller J (2004) Laser desorption/ionization mass spectrometry of diesel particulate matter with charge-transfer complexes. Anal Chem 76(14):3979–3987CrossRefGoogle Scholar
  28. 28.
    Cho Y, Witt M, Kim YH, Kim S (2012) Characterization of crude oils at the molecular level by use of laser desorption ionization fourier-transform ion cyclotron resonance mass spectrometry. Anal Chem 84(20):8587–8594CrossRefGoogle Scholar
  29. 29.
    Cho Y, Jin JM, Witt M, Birdwell JE, Na J, Roh N, Kim S (2013) Comparing laser desorption ionization and atmospheric pressure photoionization coupled to fourier transform ion cyclotron resonance mass spectrometry to characterize shale oils at the molecular level. Energy Fuels 27(4):1830–1837CrossRefGoogle Scholar
  30. 30.
    Fievre A, Solouki T, Marshall AG, Cooper WT (1997) High-resolution fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids by laser desorption/ionization and electrospray ionization. Energy Fuels 11:554–560CrossRefGoogle Scholar
  31. 31.
    Bezabeh DZ (1999) Screening of aerosol filter samples for PAHs and nitro-PAHs by laser desorption ionization TOF mass spectrometry. Aerosol Science and Technology 30(3):288–299CrossRefGoogle Scholar
  32. 32.
    Pereira TM, Vanini G, Tose LV, Cardoso FM, Fleming FP, Rosa PT, Thompson CJ, Castro EV, Vaz BG, Romão W (2014) FT-ICR MS analysis of asphaltenes: asphaltenes go in, fullerenes come out. Fuel 131:49–58CrossRefGoogle Scholar
  33. 33.
    Olcese R, Carré V, Aubriet F, Dufour A (2013) Selectivity of bio-oils catalytic hydrotreatment assessed by petroleomic and GC*GC/MS-FID analysis. Energy Fuels 27(4):2135–2145CrossRefGoogle Scholar
  34. 34.
    Smith EA, Lee YJ (2010) Petroleomic analysis of bio-oils from the fast pyrolysis of biomass: laser desorption ionization–linear ion trap–orbitrap mass spectrometry approach. Energy Fuels 24(9):5190–5198CrossRefGoogle Scholar
  35. 35.
    Cho Y, Witt M, Jin JM, Kim YH, Nho N, Kim S (2014) Evaluation of laser desorption ionization coupled to fourier transform ion cyclotron resonance mass spectrometry to study metalloporphyrin complexes. Energy Fuels:141021111705005Google Scholar
  36. 36.
    Zimmermann R, van Vaeck L, Davidovic M, Beckmann M, Adams F (2000) Analysis of polycyclic aromatic hydrocarbons (PAH) adsorbed on soot particles by fourier transform laser microprobe mass spectrometry (FT LMMS): variation of the PAH patterns at different positions in the combustion chamber of an incineration plant. Environ Sci Technol 34(22):4780–4788CrossRefGoogle Scholar
  37. 37.
    Schramm S, Carré V, Scheffler J, Aubriet F (2011) Analysis of mainstream and sidestream cigarette smoke particulate matter by laser desorption mass spectrometry. Anal Chem 83(1):133–142CrossRefGoogle Scholar
  38. 38.
    Schramm S, Carré V, Scheffler J, Aubriet F (2014) Active and passive smoking—new insights on the molecular composition of different cigarette smoke aerosols by LDI–FTICRMS. Atmospheric Environment 92:411–420CrossRefGoogle Scholar
  39. 39.
    Rathsack P, Kroll M, Rieger A, Haseneder R, Gerlach D, Repke J, Otto M (2014) Analysis of high molecular weight compounds in pyrolysis liquids from scrap tires using Fourier transform ion cyclotron resonance mass spectrometry. Journal of Analytical and Applied Pyrolysis 107:142–149CrossRefGoogle Scholar
  40. 40.
    Apicella B, Alfè M, Amoresano A, Galano E, Ciajolo A (2010) Advantages and limitations of laser desorption/ionization mass spectrometric techniques in the chemical characterization of complex carbonaceous materials. International Journal of Mass Spectrometry 295(1–2):98–102CrossRefGoogle Scholar
  41. 41.
    Creasy WR, Brenna JT (1988) Large carbon cluster ion formation by laser ablation of polyimide and graphite. Chemical Physics 126(2–3):453–468CrossRefGoogle Scholar
  42. 42.
    Apicella B, Carpentieri A, Alfè M, Barbella R, Tregrossi A, Pucci P, Ciajolo A (2007) Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame. Proceedings of the Combustion Institute 31(1):547–553CrossRefGoogle Scholar
  43. 43.
    Cristadoro A, Räder HJ, Müllen K (2007) Clustering of polycyclic aromatic hydrocarbons in matrix-assisted laser desorption/ionization and laser desorption mass spectrometry. Rapid Commun Mass Spectrom 21(16):2621–2628CrossRefGoogle Scholar
  44. 44.
    Apicella B, Alfè M, Ciajolo A (2010) Mass spectrometric advances in the analysis of large aromatic fractions of heavy fuel oils and carbon particulates. Combustion Science and Technology 182(4–6):640–652CrossRefGoogle Scholar
  45. 45.
    G Marshall A, T Blakney G, Chen T, K Kaiser N, M McKenna A, P Rodgers R, M Ruddy B, Xian F (2013) Mass resolution and mass accuracy: how much is enough? Mass Spectrom (Tokyo) 2(Spec Iss):S0009Google Scholar
  46. 46.
    Weir, John B. de V. (1960) Significance of the difference between two means when the population variances may be unequal. Nature 187:438Google Scholar
  47. 47.
    Jakober CA, Robert MA, Riddle SG, Destaillats H, Charles MJ, Green PG, Kleeman MJ (2008) Carbonyl emissions from gasoline and diesel motor vehicles. Environ Sci Technol 42(13):4697–4703CrossRefGoogle Scholar
  48. 48.
    Antipenko VR, Melenevskii VN (2012) Composition of volatile products of flash pyrolysis of natural asphaltite and its resin-asphaltene and oil components. Pet Chem 52(6):373–382CrossRefGoogle Scholar
  49. 49.
    Jakober CA, Riddle SG, Robert MA, Destaillats H, Charles MJ, Green PG, Kleeman MJ (2007) Quinone emissions from gasoline and diesel motor vehicles. Environ Sci Technol 41(13):4548–4554CrossRefGoogle Scholar
  50. 50.
    Bae E, Yeo IJ, Jeong B, Shin Y, Shin K, Kim S (2011) Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic matter with negative-mode FT-ICR MS. Anal Chem 83(11):4193–4199CrossRefGoogle Scholar
  51. 51.
    D’Andrilli J, Chanton JP, Glaser PH, Cooper WT (2010) Characterization of dissolved organic matter in northern peatland soil porewaters by ultra high resolution mass spectrometry. Organic Geochemistry 41(8):791–799CrossRefGoogle Scholar
  52. 52.
    Koch BP, Dittmar T (2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun Mass Spectrom 20(5):926–932CrossRefGoogle Scholar
  53. 53.
    Wang H (2011) Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute 33(1):41–67CrossRefGoogle Scholar
  54. 54.
    Cho Y, Kim YH, Kim S (2011) Planar limit-assisted structural interpretation of saturates/aromatics/resins/asphaltenes fractionated crude oil compounds observed by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 83(15):6068–6073CrossRefGoogle Scholar
  55. 55.
    Islam A, Cho Y, Ahmed A, Kim S (2012) Data interpretation methods for petroleomics. Mass Spectrometry Letters 3(3):63–67CrossRefGoogle Scholar
  56. 56.
    Marshall AG, Blakney GT, Hendrickson CL, Rodgers RP, Smith DF, Purcell JM (eds) (2008) Petroleomics: Chemical "dark matter"Google Scholar
  57. 57.
    Zeigler C, Macnamara K, Wang Z, Robbat A (2008) Total alkylated polycyclic aromatic hydrocarbon characterization and quantitative comparison of selected ion monitoring versus full scan gas chromatography/mass spectrometry based on spectral deconvolution. J Chromatogr A 1205(1–2):109–116CrossRefGoogle Scholar
  58. 58.
    Kolbe N, van Rheinberg O, Andersson JT (2009) Influence of desulfurization methods on the phenol content and pattern in gas oil and diesel fuel. Energy Fuels 23(6):3024–3031CrossRefGoogle Scholar
  59. 59.
    Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33(4):489–515CrossRefGoogle Scholar
  60. 60.
    Saha M, Togo A, Mizukawa K, Murakami M, Takada H, Zakaria MP, Chiem NH, Tuyen BC, Prudente M, Boonyatumanond R, Sarkar SK, Bhattacharya B, Mishra P, Tana TS (2009) Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar Pollut Bull 58(2):189–200CrossRefGoogle Scholar
  61. 61.
    Rhead MM, Hardy SA (2003) The sources of polycyclic aromatic compounds in diesel engine emissions☆. Fuel 82(4):385–393CrossRefGoogle Scholar
  62. 62.
    Chien SM, Huang YJ (2010) Sizes and polycyclic aromatic hydrocarbon composition distributions of nano, ultrafine, fine, and coarse particulates emitted from a four-stroke motorcycle. J Environ Sci Health A Tox Hazard Subst Environ Eng 45(13):1768–1774CrossRefGoogle Scholar
  63. 63.
    Zheng Z, Tang X, Asa-Awuku A, Jung HS (2010) Characterization of a method for aerosol generation from heavy fuel oil (HFO) as an alternative to emissions from ship diesel engines. J Aeros Sci 41(12):1143–1151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christopher P. Rüger
    • 1
  • Martin Sklorz
    • 1
    • 2
  • Theo Schwemer
    • 1
    • 3
  • Ralf Zimmermann
    • 1
    • 2
    • 3
  1. 1.Joint Mass Spectrometry CentreUniversity of RostockRostockGermany
  2. 2.Cooperation Group Comprehensive Molecular AnalyticsHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.HICEHelmholtz Virtual Institute of Complex Molecular Systems in Environmental Health—Aerosols and HealthBerlinGermany

Personalised recommendations