Analytical and Bioanalytical Chemistry

, Volume 407, Issue 5, pp 1403–1414 | Cite as

Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS

  • Annika I. Ostermann
  • Ina Willenberg
  • Nils Helge Schebb
Research Paper

Abstract

Oxylipins are potent lipid mediators. For the evaluation of their biological roles, several LC-MS based methods have been developed. While these methods are similar, the described sample preparation procedures for the extraction of oxylipins differ considerably. In order to deduce the most appropriate method for the analysis of non-esterified oxylipins in human plasma, we evaluated the performance of seven established sample preparation procedures. Six commonly used solid phase extraction (SPE) and one liquid-liquid extraction (LLE) protocol were compared based on the recovery of 13 added internal standards, extraction efficacy of oxylipins from plasma and reduction of ion-suppressing matrix. Dramatic differences in the performance in all three parameters were found. LLE with ethyl acetate was overall not a sufficient sample preparation strategy. The protocols using Oasis- and StrataX-material insufficiently removed interfering matrix compounds. Extraction efficacy of oxylipins on anion-exchanging BondElut cartridges was low, while removal of matrix was nearly perfect. None of the protocols led to a high extraction efficacy of analytes while removing all interfering matrix components. However, SPE on a C18-material with removal of matrix by water and n-hexane prior elution with methyl formate showed the best performance for the analysis of a broad spectrum of oxylipins in plasma.

Graphical Abstract

TOC art: Scheme of oxylipin extraction from plasma and ion suppression analysis of PGE2

Keywords

Eicosanoids Lipidomics Liquid-liquid extraction Solid phase extraction Oxylipins LC-MS 

Abbreviations

AA

Arachidonic acid

ACN

Acetonitrile

CID

Collision-induced dissociation

COX

Cyclooxygenase

DHA

Docosahexaenoic acid

DiHDPE

Dihydroxy docosapentaenoic acid

DiHETE

Dihydroxy eicosatetraenoic acid

DiHETrE

Dihydroxy eicosatrienoic acid

DiHODE

Dihydroxy octadecadienoic acid

DiHOME

Dihydroxy octadecenoic acid

EA

Ethyl acetate

EDTA

Ethylenediaminetetraacetic acid

EPA

Eicosapentaenoic acid

EpDPE

Epoxy docosapentaenoic acid

EpETE

Epoxy eicosatetraenoic acid

EpETrE

Epoxy eicosatrienoic acid

EpODE

Epoxy octadecadienoic acid

EpOME

Epoxy octadecenoic acid

ESI

Electrospray ionization

HAc

Acetic acid

HDHA

Hydroxy docosahexaenoic acid

HEPE

Hydroxy eicosapentaenoic acid

HETE

Hydroxy eicosatetraenoic acid

HODE

Hydroxy octadecadienoic acid

HOTrE

Hydroxy octadecatrienoic acid

IS

Internal standard

LC-MS

Liquid chromatography mass spectrometry

LLE

Liquid-liquid extraction

LOD

Limit of detection

LOX

Lipoxygenase

LTB

Leukotriene

LXA

Lipoxin

MeOH

Methanol

oxo-ETE

Oxo eicosatetraenoic acid

PG

Prostaglandin

PUFA

Polyunsaturated fatty acid

RP

Reversed phase

RSD

Relative standard deviation

SD

Standard deviation

SPE

Solid phase extraction

SRM

Selected reaction monitoring

TriHOME

Trihydroxy-ocadecenoic acid

Tx

Thromboxane

Supplementary material

216_2014_8377_MOESM1_ESM.pdf (1.7 mb)
ESM 1(PDF 1.70 MB)
216_2014_8377_MOESM2_ESM.xlsx (115 kb)
ESM 2(XLSX 115 kb)

References

  1. 1.
    Buczynski MW, Dumlao DS, Dennis EA (2009) Thematic review series: proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 50(6):1015–1038CrossRefGoogle Scholar
  2. 2.
    Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol 177(4):1576–1591CrossRefGoogle Scholar
  3. 3.
    Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, von Schacky C, Dechend R, Muller DN, Rothe M, Luft FC, Weylandt K, Schunck WH (2014) Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway. J Lipid Res 55(6):1150–1164CrossRefGoogle Scholar
  4. 4.
    Panigrahy D, Edin ML, Lee CR, Huang S, Bielenberg DR, Butterfield CE, Barnes CM, Mammoto A, Mammoto T, Luria A, Benny O, Chaponis DM, Dudley AC, Greene ER, Vergilio JA, Pietramaggiori G, Scherer-Pietramaggiori SS, Short SM, Seth M, Lih FB, Tomer KB, Yang J, Schwendener RA, Hammock BD, Falck JR, Manthati VL, Ingber DE, Kaipainen A, D’Amore PA, Kieran MW, Zeldin DC (2012) Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J Clin Invest 122(1):178–191CrossRefGoogle Scholar
  5. 5.
    Zhang G, Panigrahy D, Mahakian LM, Yang J, Liu J-Y, Stephen Lee KS, Wettersten HI, Ulu A, Hu X, Tam S, Hwang SH, Ingham ES, Kieran MW, Weiss RH, Ferrara KW, Hammock BD (2013) Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci U S A 110(16):6530–6535CrossRefGoogle Scholar
  6. 6.
    Arnold C, Markovic M, Blossey K, Wallukat G, Fischer R, Dechend R, Konkel A, von Schacky C, Luft FC, Muller DN, Rothe M, Schunck WH (2010) Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of {omega}-3 fatty acids. J Biol Chem 285(43):32720–32733CrossRefGoogle Scholar
  7. 7.
    Chiu CY, Gomolka B, Dierkes C, Huang NR, Schroeder M, Purschke M, Manstein D, Dangi B, Weylandt KH (2012) Omega-6 docosapentaenoic acid-derived resolvins and 17-hydroxydocosahexaenoic acid modulate macrophage function and alleviate experimental colitis. Inflamm Res 61(9):967–976CrossRefGoogle Scholar
  8. 8.
    Strassburg K, Huijbrechts AM, Kortekaas KA, Lindeman JH, Pedersen TL, Dane A, Berger R, Brenkman A, Hankemeier T, van Duynhoven J, Kalkhoven E, Newman JW, Vreeken RJ (2012) Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem 404(5):1413–1426CrossRefGoogle Scholar
  9. 9.
    Dumlao DS, Buczynski MW, Norris PC, Harkewicz R, Dennis EA (2011) High-throughput lipidomic analysis of fatty acid derived eicosanoids and N-acylethanolamines. Biochim Biophys Acta 1811(11):724–736CrossRefGoogle Scholar
  10. 10.
    Yang J, Schmelzer K, Georgi K, Hammock BD (2009) Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem 81(19):8085–8093CrossRefGoogle Scholar
  11. 11.
    Masoodi M, Mir AA, Petasis NA, Serhan CN, Nicolaou A (2008) Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 22(2):75–83CrossRefGoogle Scholar
  12. 12.
    Schuchardt JP, Schmidt S, Kressel G, Dong H, Willenberg I, Hammock BD, Hahn A, Schebb NH (2013) Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukot Essent 89(1):19–29CrossRefGoogle Scholar
  13. 13.
    Gomolka B, Siegert E, Blossey K, Schunck WH, Rothe M, Weylandt KH (2011) Analysis of omega-3 and omega-6 fatty acid-derived lipid metabolite formation in human and mouse blood samples. Prostaglandins Other Lipid Mediat 94(3–4):81–87CrossRefGoogle Scholar
  14. 14.
    Tsikas D, Zoerner AA (2014) Analysis of eicosanoids by LC-MS/MS and GC-MS/MS: a historical retrospect and a discussion. J Chromatogr B 964:79–88CrossRefGoogle Scholar
  15. 15.
    Fromel T, Jungblut B, Hu J, Trouvain C, Barbosa-Sicard E, Popp R, Liebner S, Dimmeler S, Hammock BD, Fleming I (2012) Soluble epoxide hydrolase regulates hematopoietic progenitor cell function via generation of fatty acid diols. Proc Natl Acad Sci U S A 109(25):9995–10000CrossRefGoogle Scholar
  16. 16.
    Giera M, Ioan-Facsinay A, Toes R, Gao F, Dalli J, Deelder AM, Serhan CN, Mayboroda OA (2012) Lipid and lipid mediator profiling of human synovial fluid in rheumatoid arthritis patients by means of LC-MS/MS. Biochim Biophys Acta 1821(11):1415–1424CrossRefGoogle Scholar
  17. 17.
    Balvers MGJ, Verhoeckx KCM, Bijlsma S, Rubingh CM, Meijerink J, Wortelboer HM, Witkamp RF (2012) Fish oil and inflammatory status alter the n-3 to n-6 balance of the endocannabinoid and oxylipin metabolomes in mouse plasma and tissues. Metabolomics 8(6):1130–1147CrossRefGoogle Scholar
  18. 18.
    Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38(4):328–334CrossRefGoogle Scholar
  19. 19.
    Schebb NH, Inceoglu B, Rose T, Wagner K, Hammock BD (2011) Development of an ultra fast online-solid phase extraction (SPE) liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS) based approach for the determination of drugs in pharmacokinetic studies. Anal Methods 3(2):420–428CrossRefGoogle Scholar
  20. 20.
    Inceoglu B, Wagner KM, Yang J, Bettaieb A, Schebb NH, Hwang SH, Morisseau C, Haj FG, Hammock BD (2012) Acute augmentation of epoxygenated fatty acid levels rapidly reduces pain-related behavior in a rat model of type I diabetes. Proc Natl Acad Sci U S A 109(28):11390–11395CrossRefGoogle Scholar
  21. 21.
    Schebb NH, Ostermann AI, Yang J, Hammock BD, Hahn A, Schuchardt JP (2014) Comparison of the effects of long-chain omega-3 fatty acid supplementation on plasma levels of free and esterified oxylipins. Prostag Oth Lipid MGoogle Scholar
  22. 22.
    Shearer GC, Newman JW (2009) Impact of circulating esterified eicosanoids and other oxylipins on endothelial function. Curr Atheroscler Reports 11(6):403–410CrossRefGoogle Scholar
  23. 23.
    Yang R, Chiang N, Oh SF, Serhan CN (2011) Metabolomics-lipidomics of eicosanoids and docosanoids generated by phagocytes. Curr Protoc Immunol Chapter 14:Unit 14 26Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Annika I. Ostermann
    • 1
  • Ina Willenberg
    • 1
  • Nils Helge Schebb
    • 1
    • 2
  1. 1.Institute for Food Toxicology and Analytical ChemistryUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.Institute of Food ChemistryUniversity of WuppertalWuppertalGermany

Personalised recommendations