Analytical and Bioanalytical Chemistry

, Volume 407, Issue 5, pp 1415–1431 | Cite as

Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples

  • Elisa Ghelardi
  • Ilaria Degano
  • Maria Perla Colombini
  • Joy Mazurek
  • Michael Schilling
  • Tom Learner
Research Paper

Abstract

A collection of 76 synthetic organic pigments was analysed using pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The purpose of this work was to expand the knowledge on synthetic pigments and to assess characteristic pyrolysis products that could help in the identification of these pigments in paint samples. We analysed several classes of synthetic pigments not previously reported as being analysed by this technique: some metal complexes, β-naphthol pigment lakes, BONA pigment lakes, disazopyrazolone, triarylcarbonium, dioxazine, anthraquinone, indanthrone, isoindoline and thioindigo classes. We also report for the first time the Py-GC/MS analysis of a number of naphthol AS, benzimidazolone, phthalocyanine and perylene pigments and other miscellaneous pigments including pigments with unpublished chemical structure. We successfully used the Py-GC/MS technique for the analysis of paints by artists Clyfford Still and Jackson Pollock to identify the synthetic organic pigments and the binding media.

Graphical Abstract

Pyrogram of PR49, with fragments produced by pyrolysis

Keywords

Py-GC/MS Synthetic organic pigments Clyfford Still Jackson Pollock Contemporary art Mass spectrometry 

Supplementary material

216_2014_8370_MOESM1_ESM.pdf (221 kb)
ESM 1(PDF 220 kb)

References

  1. 1.
    Society of Dyers and Colourists (1971) Colour index 1971. third ed., BradfordGoogle Scholar
  2. 2.
    Herbst W, Hunger K (2004) Industrial organic pigments: production, properties, applications, 3rd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. 3.
    Bell IM, Clark RJH, Gibbs PJ (1997) Raman spectroscopic library of natural and synthetic pigments. Spectrochim Acta A 53:2159–2179CrossRefGoogle Scholar
  4. 4.
    Burgio L, Clark RJH (2001) Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim Acta A 57:1491–1521CrossRefGoogle Scholar
  5. 5.
    Ropret P, Centeno SA, Bukovec P (2008) Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies. Spectrochim Acta A 69:486–497CrossRefGoogle Scholar
  6. 6.
    Scherrer NC, Stefan Z, Francoise D, Annette F, Renate K (2009) Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim Acta A 73:505–524CrossRefGoogle Scholar
  7. 7.
    Vandenabeele P, Moens L, Edwards HGM, Dams R (2000) Raman spectroscopic database of azo pigments and application to modern art studies. J Raman Spectrosc 31:509–517CrossRefGoogle Scholar
  8. 8.
    Fremout W, Saverwyns S (2012) Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J Raman Spectrosc 43:1536–1544CrossRefGoogle Scholar
  9. 9.
    Lomax SQ, Schilling M, Learner T (2007) The identification of synthetic organic pigments by FTIR and DTMS. Modern paints uncovered. Getty Conservation Institute, Tate Modern, LondonGoogle Scholar
  10. 10.
    Menke CA, Rivenc R, Learner T (2009) The use of direct temperature-resolved mass spectrometry (DTMS) in the detection of organic pigments found in acrylic paints used by Sam Francis. Int J Mass Spectrom 284:2–11CrossRefGoogle Scholar
  11. 11.
    Boon JJ, Learner T (2002) Analytical mass spectrometry of artists’ acrylic emulsion paints by direct temperature resolved mass spectrometry and laser desorption ionisation mass spectrometry. J Anal Appl Pyrolysis 64(2):327–344CrossRefGoogle Scholar
  12. 12.
    Kirby DP, Khandekar N, Sutherland K, Price BA (2009) Applications of laser desorption mass spectrometry for the study of synthetic organic pigments in works of art. Int J Mass Spectrom 284:115–122CrossRefGoogle Scholar
  13. 13.
    Sonoda N (1999) Characterization of organic azo-pigments by pyrolysis-gas chromatography. Stud Conserv 44(3):195–208Google Scholar
  14. 14.
    Learner T (2004) Analysis of modern paints. Getty Conservation InstituteGoogle Scholar
  15. 15.
    Russell J, Singer BW, Perry JJ, Bacon A (2011) The identification of synthetic organic pigments in modern paints and modern paintings using pyrolysis-gas chromatography–mass spectrometry. Anal Bioanal Chem 400:1473–1491CrossRefGoogle Scholar
  16. 16.
    Lomax SQ, Learner T (2006) A review of the classes, structures, and methods of analysis of synthetic organic pigments. J Am Inst Conserv 45(2):107–125CrossRefGoogle Scholar
  17. 17.
    Szafran Y, Rivers L, Phenix A, Learner T, Landau EG, Martin S (2014) Jackson Pollock’s mural: the transitional moment. GettyGoogle Scholar
  18. 18.
    Stenger J, Kwan EE, Eremin K, Speakman S, Kirby D, Stewart H, Huang SG, Kennedy AR, Newman R, Khandekar N (2010) Lithol red salts: characterization and deterioration. e-PS web edition, 7, 147–157Google Scholar
  19. 19.
    Pratt LS (1947) The chemistry and physics of organic pigments. Wiley, New YorkGoogle Scholar
  20. 20.
    Piccirillo A, Scalarone D, Chiantore O (2005) Comparison between off-line and on-line derivatisation methods in the characterisation of siccative oils in paint media. J Anal Appl Pyrolysis 74(1–2):33–38CrossRefGoogle Scholar
  21. 21.
    Dredge P, Schilling MR, Gautier G, Mazurek J, Learner T, Wuhrer R (2013) Lifting the lids off Ripolin: a collection of paint from Sidney Nolan’s studio. J Am Inst Conserv 52(4):213–226CrossRefGoogle Scholar
  22. 22.
    Eastaugh N, Walsh V, Chaplin T, Siddall R (2008) Pigment compendium. ElsevierGoogle Scholar
  23. 23.
    Sobel D, Anfam D (2012) Clyfford Still—the artist’s museum. Skira Rizzoli, New YorkGoogle Scholar
  24. 24.
    Bonaduce I, Andreotti A (2009) Py-GC/MS of organic paint binders. In Organic Mass Spectrometry in Art and Archaeology. WileyGoogle Scholar
  25. 25.
    Shedrinsky A, Baer NS (2006) The application of analytical pyrolysis to the study of cultural materials. In Applied Pyrolysis Handbook (II ed). CRCGoogle Scholar
  26. 26.
    Chiavari G, Prati S (2003) Analytical pyrolysis as diagnostic tool in the investigation of works of art. Chromatographia 58(9–10):543–554Google Scholar
  27. 27.
    Learner T The analysis of synthetic paints by pyrolysis-gas chromatography–mass spectrometry (PyGCMS). Stud Conserv 46: 4 225–241Google Scholar
  28. 28.
    Scalarone D, Chiantore O (2004) Separation techniques for the analysis of artists’ acrylic emulsion paints. J Sep Sci 27:263–274CrossRefGoogle Scholar
  29. 29.
    Sonoda N, Rioux JP (1990) Identification des matériaux synthétiques dans les peintures modernes I. Vernis et liants polymères. Stud Conserv 35(4):189–204CrossRefGoogle Scholar
  30. 30.
    Peris-Vicente J, Baumer U, Stege H, Lutzenberger K, Gimeno-Adelantado JV (2009) Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation. Anal Chem 81(8):3180–3187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Elisa Ghelardi
    • 1
  • Ilaria Degano
    • 1
  • Maria Perla Colombini
    • 1
    • 2
  • Joy Mazurek
    • 3
  • Michael Schilling
    • 3
  • Tom Learner
    • 3
  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaPisaItaly
  2. 2.ICVBC-CNRSesto FiorentinoItaly
  3. 3.Getty Conservation InstituteLos AngelesUSA

Personalised recommendations