Analytical and Bioanalytical Chemistry

, Volume 407, Issue 8, pp 2223–2243 | Cite as

The challenge of on-tissue digestion for MALDI MSI— a comparison of different protocols to improve imaging experiments

  • Hanna C. Diehl
  • Birte Beine
  • Julian Elm
  • Dennis Trede
  • Maike Ahrens
  • Martin Eisenacher
  • Katrin Marcus
  • Helmut E. Meyer
  • Corinna Henkel
Research Paper
Part of the following topical collections:
  1. Mass Spectrometry Imaging

Abstract

Mass spectrometry imaging (MSI) has become a powerful and successful tool in the context of biomarker detection especially in recent years. This emerging technique is based on the combination of histological information of a tissue and its corresponding spatial resolved mass spectrometric information. The identification of differentially expressed protein peaks between samples is still the method’s bottleneck. Therefore, peptide MSI compared to protein MSI is closer to the final goal of identification since peptides are easier to measure than proteins. Nevertheless, the processing of peptide imaging samples is challenging due to experimental complexity. To address this issue, a method development study for peptide MSI using cryoconserved and formalin-fixed paraffin-embedded (FFPE) rat brain tissue is provided. Different digestion times, matrices, and proteases were tested to define an optimal workflow for peptide MSI. All practical experiments were done in triplicates and analyzed by the SCiLS Lab software, using structures derived from myelin basic protein (MBP) peaks, principal component analysis (PCA) and probabilistic latent semantic analysis (pLSA) to rate the experiments’ quality. Blinded experimental evaluation in case of defining countable structures in the datasets was performed by three individuals. Such an extensive method development for peptide matrix-assisted laser desorption/ionization (MALDI) imaging experiments has not been performed so far, and the resulting problems and consequences were analyzed and discussed.

Graphical abstract

Example of experimental setup: Comparison of matrices DHB vs. HCCA (II) using FFPE tissue digested for 2 h. Overview of the statistic and structure analysis. (a) pLSA, only components with at least two clearly visible structures are displayed. (b) Mean of counted structures for all visible m/z values of theoretically digested MBP. The three numbers for each experimental condition are derived from counts of three different researchers (R1, R2, and R3). Color coding for (c) and (d): HCCA (II) in red and DHB in blue. (c) PCA of the mean spectra and (d) PCA of the spectra group

Keywords

Matrix-assisted laser desorption/ionization (MALDI) Mass spectrometry imaging (MSI) Sample preparation Peptide imaging Formalin-fixed paraffin-embedded (FFPE) Tryptic digestion LysC-mix 

Supplementary material

216_2014_8345_MOESM1_ESM.pdf (1.5 mb)
ESM 1(PDF 1.53 mb)

References

  1. 1.
    McDonnell LA, Corthals GL, Willems SM, van Remoortere A, van Zeijl RJ, Deelder AM (2010) Peptide and protein imaging mass spectrometry in cancer research. J Proteome 73(10):1921–1944. doi:10.1016/j.jprot.2010.05.007 CrossRefGoogle Scholar
  2. 2.
    Nilsson A, Fehniger TE, Gustavsson L, Andersson M, Kenne K, Marko-Varga G, Andren PE (2010) Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS One 5(7):e11411. doi:10.1371/journal.pone.0011411 CrossRefGoogle Scholar
  3. 3.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69(23):4751–4760CrossRefGoogle Scholar
  4. 4.
    Schober Y, Guenther S, Spengler B, Rompp A (2012) High-resolution matrix-assisted laser desorption/ionization imaging of tryptic peptides from tissue. Rapid Commun Mass Spectrom: RCM 26(9):1141–1146. doi:10.1002/rcm.6192 CrossRefGoogle Scholar
  5. 5.
    Spraggins JM, Caprioli RM (2011) High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J Am Soc Mass Spectrom 22(6):1022–1031. doi:10.1007/s13361-011-0121-0 CrossRefGoogle Scholar
  6. 6.
    Yang J, Caprioli RM (2011) Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem 83(14):5728–5734. doi:10.1021/ac200998a CrossRefGoogle Scholar
  7. 7.
    Baluya DL, Garrett TJ, Yost RA (2007) Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal Chem 79(17):6862–6867. doi:10.1021/ac070958d CrossRefGoogle Scholar
  8. 8.
    Groseclose MR, Andersson M, Hardesty WM, Caprioli RM (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom: JMS 42(2):254–262. doi:10.1002/jms.1177 CrossRefGoogle Scholar
  9. 9.
    Groseclose MR, Massion PP, Chaurand P, Caprioli RM (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8(18):3715–3724. doi:10.1002/pmic.200800495 CrossRefGoogle Scholar
  10. 10.
    Cole LM, Mahmoud K, Haywood-Small S, Tozer GM, Smith DP, Clench MR (2013) Recombinant “IMS TAG” proteins—a new method for validating bottom-up matrix-assisted laser desorption/ionisation ion mobility separation mass spectrometry imaging. Rapid Commun Mass Spectrom: RCM 27(21):2355–2362. doi:10.1002/rcm.6693 CrossRefGoogle Scholar
  11. 11.
    Franck J, Quanico J, Wisztorski M, Day R, Salzet M, Fournier I (2013) Quantification-based mass spectrometry imaging of proteins by parafilm assisted microdissection. Anal Chem 85(17):8127–8134. doi:10.1021/ac4009397 CrossRefGoogle Scholar
  12. 12.
    Schober Y, Schramm T, Spengler B, Rompp A (2011) Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides. Rapid Commun Mass Spectrom: RCM 25(17):2475–2483. doi:10.1002/rcm.5135 CrossRefGoogle Scholar
  13. 13.
    Martin-Lorenzo M, Balluff B, Sanz-Maroto A, van Zeijl RJ, Vivanco F, Alvarez-Llamas G, McDonnell LA (2014) 30 μm spatial resolution protein MALDI MSI: in-depth comparison of five sample preparation protocols applied to human healthy and atherosclerotic arteries. J Proteome 108:465–468. doi:10.1016/j.jprot.2014.06.013 CrossRefGoogle Scholar
  14. 14.
    Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom 19(8):1069–1077. doi:10.1016/j.jasms.2008.03.016 CrossRefGoogle Scholar
  15. 15.
    Goodwin RJ (2012) Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteome 75(16):4893–4911. doi:10.1016/j.jprot.2012.04.012 CrossRefGoogle Scholar
  16. 16.
    Oezdemir RF, Gaisa NT, Lindemann-Docter K, Gostek S, Weiskirchen R, Ahrens M, Schwamborn K, Stephan C, Pfister D, Heidenreich A, Knuechel R, Henkel C (2012) Proteomic tissue profiling for the improvement of grading of noninvasive papillary urothelial neoplasia. Clin Biochem 45(1–2):7–11. doi:10.1016/j.clinbiochem.2011.09.013 CrossRefGoogle Scholar
  17. 17.
    Palmer-Toy DE, Krastins B, Sarracino DA, Nadol JB Jr, Merchant SN (2005) Efficient method for the proteomic analysis of fixed and embedded tissues. J Proteome Res 4(6):2404–2411. doi:10.1021/pr050208p CrossRefGoogle Scholar
  18. 18.
    Gustafsson OJ, Eddes JS, Meding S, McColl SR, Oehler MK, Hoffmann P (2013) Matrix-assisted laser desorption/ionization imaging protocol for in situ characterization of tryptic peptide identity and distribution in formalin-fixed tissue. Rapid Commun Mass Spectrom: RCM 27(6):655–670. doi:10.1002/rcm.6488 CrossRefGoogle Scholar
  19. 19.
    Thiele H, Heldmann S, Trede D, Strehlow J, Wirtz S, Dreher W, Berger J, Oetjen J, Kobarg JH, Fischer B, Maass P (2014) 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining. Biochim Biophys Acta 1844(1 Pt A):117–137. doi:10.1016/j.bbapap.2013.01.040 CrossRefGoogle Scholar
  20. 20.
    Gustafsson JO, Oehler MK, McColl SR, Hoffmann P (2010) Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue. J Proteome Res 9(9):4315–4328. doi:10.1021/pr9011766 CrossRefGoogle Scholar
  21. 21.
    Mann M, Hojrup P, Roepstorff P (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22(6):338–345. doi:10.1002/bms.1200220605 CrossRefGoogle Scholar
  22. 22.
    Alexandrov T, Kobarg JH (2011) Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics 27(13):i230–i238. doi:10.1093/bioinformatics/btr246 CrossRefGoogle Scholar
  23. 23.
    Hanselmann M, Kirchner M, Renard BY, Amstalden ER, Glunde K, Heeren RM, Hamprecht FA (2008) Concise representation of mass spectrometry images by probabilistic latent semantic analysis. Anal Chem 80(24):9649–9658. doi:10.1021/ac801303x CrossRefGoogle Scholar
  24. 24.
    Franck J, Arafah K, Barnes A, Wisztorski M, Salzet M, Fournier I (2009) Improving tissue preparation for matrix-assisted laser desorption ionization mass spectrometry imaging. Part 1: using microspotting. Anal Chem 81(19):8193–8202. doi:10.1021/ac901328p CrossRefGoogle Scholar
  25. 25.
    Ronci M, Sharma S, Chataway T, Burdon KP, Martin S, Craig JE, Voelcker NH (2011) MALDI-MS-imaging of whole human lens capsule. J Proteome Res 10(8):3522–3529. doi:10.1021/pr200148k CrossRefGoogle Scholar
  26. 26.
    Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6(11):1695–1709. doi:10.1038/nprot.2011.388 CrossRefGoogle Scholar
  27. 27.
    Rechthaler J, Pittenauer E, Schaub TM, Allmaier G (2013) Detection of amine impurity and quality assessment of the MALDI matrix alpha-cyano-4-hydroxy-cinnamic acid for peptide analysis in the amol range. J Am Soc Mass Spectrom 24(5):701–710. doi:10.1007/s13361-013-0614-0 CrossRefGoogle Scholar
  28. 28.
    Gonnet F, Lemaitre G, Waksman G, Tortajada J (2003) MALDI/MS peptide mass fingerprinting for proteome analysis: identification of hydrophobic proteins attached to eucaryote keratinocyte cytoplasmic membrane using different matrices in concert. Proteome Sci 1(1):2CrossRefGoogle Scholar
  29. 29.
    Wisniewski JR, Mann M (2012) Consecutive proteolytic digestion in an enzyme reactor increases depth of proteomic and phosphoproteomic analysis. Anal Chem 84(6):2631–2637. doi:10.1021/ac300006b CrossRefGoogle Scholar
  30. 30.
    Quanico J, Franck J, Dauly C, Strupat K, Dupuy J, Day R, Salzet M, Fournier I, Wisztorski M (2013) Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J Proteome 79:200–218. doi:10.1016/j.jprot.2012.11.025 CrossRefGoogle Scholar
  31. 31.
    Cillero-Pastor B, Heeren RM (2014) Matrix-assisted laser desorption ionization mass spectrometry imaging for peptide and protein analyses: a critical review of on-tissue digestion. J Proteome Res 13(2):325–335. doi:10.1021/pr400743a CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hanna C. Diehl
    • 1
  • Birte Beine
    • 1
    • 2
  • Julian Elm
    • 1
  • Dennis Trede
    • 3
  • Maike Ahrens
    • 1
  • Martin Eisenacher
    • 1
  • Katrin Marcus
    • 1
  • Helmut E. Meyer
    • 2
  • Corinna Henkel
    • 1
    • 2
  1. 1.Medizinisches Proteom-CenterRuhr-University BochumBochumGermany
  2. 2.Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V.DortmundGermany
  3. 3.SCiLS GmbHBremenGermany

Personalised recommendations