Analytical and Bioanalytical Chemistry

, Volume 407, Issue 4, pp 1181–1190 | Cite as

Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters

  • Angelo Antonio D’ArchivioEmail author
  • Maria Anna Maggi
  • Fabrizio Ruggieri
Research Paper


A multilayer artificial neural network (ANN) is used to model the reversed-phase liquid chromatography retention times of 16 selected compounds, including purines, pyrimidines and nucleosides. The analysed data, taken from literature, were collected in acetonitrile-water eluents under the application of 16 different multilinear gradients. The parameters describing the gradient profile together with solute descriptors are considered as the independent variables of an ANN-based model providing the retention time as response. Categorical variables or, alternatively, a selected set of molecular descriptors of computational origin are adopted to represent the solutes. Network training, validation and testing are performed preliminarily using data of 12, 2 and 4 gradients, respectively and successively, to investigate model performance under more severe calibration conditions, with data of 9, 2 and 7 gradients. The proposed approach allows a quite accurate prediction of retention times of the target analytes in external multilinear gradients. Categorical variables can successfully represent the target solutes when the model is called to transfer retention data from calibration to external gradients. In particular, using a five-dimensional bit string to represent the analytes, mean errors on retention times are 2 and 3 % under the most and less favourable calibration conditions, respectively. A comparable performance is observed if the categorical variables are replaced by five molecular descriptors, selected by a genetic algorithm within a large set of structural variables of computational origin.


Reversed-phase liquid chromatography Multilinear gradient elution Retention prediction Artificial neural network Quantitative structure-retention relationship 

Supplementary material

216_2014_8317_MOESM1_ESM.pdf (11 kb)
ESM 1 (PDF 10 kb)


  1. 1.
    Poole CF (2003) The essence of chromatography. Elsevier Science B.V., AmsterdamGoogle Scholar
  2. 2.
    Jandera P (2006) J Chromatogr A 1126:195–218CrossRefGoogle Scholar
  3. 3.
    Fatemi MH, Abraham MH, Poole CF (2008) J Chromatogr A 1190:241–252CrossRefGoogle Scholar
  4. 4.
    Bączek T, Kaliszan R (2002) J Chromatogr A 962:41–55CrossRefGoogle Scholar
  5. 5.
    Téllez A, Rosés M, Bosch E (2009) Anal Chem 81:9135–9145CrossRefGoogle Scholar
  6. 6.
    Nikitas P, Pappa-Louisi A, Papageorgiou A (2007) J Chromatogr A 1157:178–186CrossRefGoogle Scholar
  7. 7.
    Concha-Herrera V, Vivó-Truyols G, Torres-Lapasió JR, García-Alvarez-Coque MC (2005) J Chromatogr A 1063:79–88CrossRefGoogle Scholar
  8. 8.
    Ortiz-Bolsico C, Torres-Lapasió JR, García-Alvarez-Coque MC (2014) J Chromatogr A 1350:51–60CrossRefGoogle Scholar
  9. 9.
    De Beer M, Lynen F, Chen K, Ferguson P, Hanna-Brown M, Sandra P (2010) Anal Chem 82:1733–1743CrossRefGoogle Scholar
  10. 10.
    Neue UD, Kuss H-J (2010) J Chromatogr A 1217:3794–3808CrossRefGoogle Scholar
  11. 11.
    Héberger K (2007) J Chromatogr A 1158:273–305CrossRefGoogle Scholar
  12. 12.
    Loukas YL (2000) J Chromatogr A 904:119–129CrossRefGoogle Scholar
  13. 13.
    Put R, Vander Heyden Y (2007) Anal Chim Acta 602:164–172CrossRefGoogle Scholar
  14. 14.
    Cirera-Domènech E, Estrada-Tejedor R, Broto-Puig F, Teixidó J, Gassiot-Matas M, Comellas L, Lliberia JL, Méndez A, Paz-Estivill S, Delgado-Ortiz MR (2013) J Chromatogr A 1276:65–77CrossRefGoogle Scholar
  15. 15.
    Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Talanta 76:965–977CrossRefGoogle Scholar
  16. 16.
    Novotná K, Havliš J, Havel J (2005) J Chromatogr A 1096:50–57CrossRefGoogle Scholar
  17. 17.
    Tran ATK, Hyne RV, Pablo F, Day WR, Doble P (2007) Talanta 71:1268–1275CrossRefGoogle Scholar
  18. 18.
    Tham SY, Agatonovic-Kustrin S (2002) J Pharm Biomed Anal 28:581–590CrossRefGoogle Scholar
  19. 19.
    Golubovíc J, Protíc A, Zečević M, Otaševíc B, Mikić M, Živanović L (2012) Talanta 100:329–337CrossRefGoogle Scholar
  20. 20.
    Carlucci G, D’Archivio AA, Maggi MA, Mazzeo P, Ruggieri F (2007) Anal Chim Acta 601:68–76CrossRefGoogle Scholar
  21. 21.
    D’Archivio AA, Giannitto A, Maggi MA, Ruggieri F (2012) Anal Chim Acta 717:52–60CrossRefGoogle Scholar
  22. 22.
    D’Archivio AA, Maggi MA, Ruggieri F (2011) Anal Chim Acta 690:35–46CrossRefGoogle Scholar
  23. 23.
    D’Archivio AA, Maggi MA, Ruggieri F (2014) J Sep Sci 37:1930–1936CrossRefGoogle Scholar
  24. 24.
    Nikitas P, Pappa-Louisi A, Agrafiotou P, Mansour A (2011) J Chromatogr A 1218:5658–5663CrossRefGoogle Scholar
  25. 25.
    Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design. Wiley, WeinheimGoogle Scholar
  26. 26.
    Marini F, Bucci R, Magrì AL, Magrì AD (2008) Microchem J 88:178–185CrossRefGoogle Scholar
  27. 27.
    Svozil D, Kvasnička V, Pospíchal J (1997) Chemom Intell Lab Syst 39:43–62CrossRefGoogle Scholar
  28. 28.
    Lopez R (2012). OpenNN: Open Neural Networks Library (Version 0.9). Retrieved from
  29. 29.
    Härdle W, Simar L (2003) Applied multivariate statistical analysis. Springer, BerlinCrossRefGoogle Scholar
  30. 30.
    Mohamadi F, Richards NG, Guida WC, Liskamp R, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440–467CrossRefGoogle Scholar
  31. 31.
    Talete srl, DRAGON 6.0 for Windows (Software for Molecular Descriptor Calculations);
  32. 32.
    Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley, WeinheimCrossRefGoogle Scholar
  33. 33.
    Leardi R (ed) (2003) Nature-inspired methods in chemometrics: genetic algorithms and artificial neural networks. In: Data handling in science and technology, vol 23. Elsevier, AmsterdamGoogle Scholar
  34. 34.
    Wehrens R, Buydens LMC (1998) Trends Anal Chem 17:193–203CrossRefGoogle Scholar
  35. 35.
    Forina M, Lanteri S, Armanino C, Casolino C, Casale M, Oliveri P. V-PARVUS 2010. Dip. Chimica e Tecnologie Farmaceutiche ed Alimentari, University of Genova.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Angelo Antonio D’Archivio
    • 1
    Email author
  • Maria Anna Maggi
    • 2
  • Fabrizio Ruggieri
    • 1
  1. 1.Dipartimento di Scienze Fisiche e ChimicheUniversità degli Studi dell’AquilaL’AquilaItaly
  2. 2.Hortus NovusL’AquilaItaly

Personalised recommendations