Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 8, pp 2149–2158 | Cite as

Distribution of terfenadine and its metabolites in locusts studied by desorption electrospray ionization mass spectrometry imaging

  • Line Rørbæk Olsen
  • Steen Honoré Hansen
  • Christian Janfelt
Research Paper
Part of the following topical collections:
  1. Mass Spectrometry Imaging

Abstract

Desorption electrospray ionization (DESI) mass spectrometry (MS) imaging was used to image locusts dosed with the antihistamine drug terfenadine. The study was conducted in order to elucidate a relatively high elimination rate of terfenadine from the locust hemolymph. In this one of the few MS imaging studies on insects, a method for cryosectioning of whole locusts was developed, and the distributions of a number of endogenous compounds are reported, including betaine and a number of amino acids and phospholipids. Terfenadine was detected in the stomach region and the intestine walls, whereas three different metabolites—terfenadine acid (fexofenadine), terfenadine glucoside, and terfenadine phosphate—were detected in significantly smaller amounts and only in the unexcreted feces in the lower part of the intestine. The use of MS/MS imaging was necessary in order to detect the metabolites. With use of DESI-MS imaging, no colocalization of the drug and the metabolites was observed, suggesting a very rapid excretion of metabolites into the feces. Additional liquid chromatography–MS investigations were performed on hemolymph and feces and showed some abundance of terfenadine and the three metabolites, although at low levels, in both the hemolymph and the feces.

Graphical Abstract

Keywords

Drug metabolitsm Insects Mass spectrometry imaging Desorption electrospray ionization mass spectrometry 

Notes

Acknowledgments

Support from the Danish National Advanced Technology Foundation (grant 023-2011-3), the Carlsberg Foundation, and the Danish Council for Independent Research | Natural Sciences is gratefully acknowledged.

Supplementary material

216_2014_8292_MOESM1_ESM.pdf (108 kb)
ESM 1 (PDF 108 kb)

References

  1. 1.
    Andersson O, Hansen SH, Hellman K, Olsen LR, Andersson G, Badolo L, Svenstrup N, Nielsen PA (2013) The grasshopper: a novel model for assessing vertebrate brain uptake. J Pharmacol Exp Ther 346(2):211–218CrossRefGoogle Scholar
  2. 2.
    Nielsen PA, Andersson O, Hansen SH, Simonsen KB, Andersson G (2011) Models for predicting blood-brain barrier permeation. Drug Discov Today 16(11–12):472–475CrossRefGoogle Scholar
  3. 3.
    Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225CrossRefGoogle Scholar
  4. 4.
    Ronis MJJ, Hodgson E (1989) Cytochrome P-450 monooxygenases in insects. Xenobiotica 19(10):1077–1092CrossRefGoogle Scholar
  5. 5.
    Klowden MJ (2007) Physiological systems in insects, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Olsen LR, Gabel-Jensen C, Nielsen PA, Hansen SH, Badolo L (2014) Identification of a functional homolog to the mammalian CYP3A4 in locusts. Drug Metab Dispos 42(7):1153–1162CrossRefGoogle Scholar
  7. 7.
    Honig PK, Wortham DC, Zamani K, Conner DP, Mullin JC, Cantilena LR (1993) Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences. JAMA 269(12):1513–1518CrossRefGoogle Scholar
  8. 8.
    Masheter HC (1993) Terfenadine - the 1st nonsedating antihistamine. Clin Rev Allergy 11(1):5–34Google Scholar
  9. 9.
    Okerholm RA, Weiner DL, Hook RH, Walker BJ, Leeson GA, Biedenbach SA, Cawein MJ, Dusebout TD, Wright GJ, Myers M, Schindler V, Cook CE (1981) Bioavailability of terfenadine in man. Biopharm Drug Dispos 2(2):185–190CrossRefGoogle Scholar
  10. 10.
    Rau SE, Bend JR, Arnold JMO, Tran LT, Spence JD, Bailey DG (1997) Grapefruit juice terfenadine single-dose interaction: Magnitude, mechanism, and relevance. Clin Pharmacol Ther 61(4):401–409CrossRefGoogle Scholar
  11. 11.
    Solon EG, Balani SK, Lee FW (2002) Whole-body autoradiography in drug discovery. Curr Drug Metab 3(5):451–462CrossRefGoogle Scholar
  12. 12.
    McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643CrossRefGoogle Scholar
  13. 13.
    Prideaux B, Stoeckli M (2012) Mass spectrometry imaging for drug distribution studies. J Proteome 75(16):4999–5013CrossRefGoogle Scholar
  14. 14.
    Chaurand P, Caprioli RM (2002) Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis 23(18):3125–3135CrossRefGoogle Scholar
  15. 15.
    Bjarnholt N, Li B, D’Alvise J, Janfelt C (2014) Mass spectrometry imaging of plant metabolites – principles and possibilities. Nat Prod Rep 31:818–837CrossRefGoogle Scholar
  16. 16.
    Römpp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139(6):759–783CrossRefGoogle Scholar
  17. 17.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473CrossRefGoogle Scholar
  18. 18.
    Wiseman JM, Puolitaival SM, Takats Z, Cooks RG, Caprioli RM (2005) Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chem Int Ed 44(43):7094–7097CrossRefGoogle Scholar
  19. 19.
    Kertesz V, Van Berkel GJ, Vavrek M, Koeplinger KA, Schneider BB, Covey TR (2008) Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal Chem 80(13):5168–5177CrossRefGoogle Scholar
  20. 20.
    Chen J, Hsieh Y, Knemeyer I, Crossman L, Korfmacher WA (2008) Visualization of first-pass drug metabolism of terfenadine by MALDI-imaging mass spectrometry. Drug Metab Lett 2(1):1–4CrossRefGoogle Scholar
  21. 21.
    D’Alvise J, Mortensen R, Hansen SH, Janfelt C (2014) Detection of follicular transport of lidocaine and metabolism in adipose tissue in pig ear skin by DESI mass spectrometry imaging. Anal Bioanal Chem 406:3735–3742CrossRefGoogle Scholar
  22. 22.
    Janfelt C, Wellner N, Hansen HS, Hansen SH (2013) Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes. J Mass Spectrom 48(3):361–366CrossRefGoogle Scholar
  23. 23.
    Vrkoslav V, Muck A, Cvačka J, Svatoš A (2010) MALDI imaging of neutral cuticular lipids in insects and plants. J Am Soc Mass Spectrom 21(2):220–231CrossRefGoogle Scholar
  24. 24.
    Lee RM (1961) The variation of blood volume with age in the desert locust (Schistocerca gregaria Forsk). J Insect Physiol 6(1):36–51CrossRefGoogle Scholar
  25. 25.
    Janfelt C, Wellner N, Leger P-L, Kokesch-Himmelreich J, Hansen SH, Charriaut-Marlangue C, Hansen HS (2012) Visualization by mass spectrometry of 2-dimensional changes in rat brain lipids, including N-acylphosphatidylethanolamines, during neonatal brain ischemia. FASEB J 26:2667–2673CrossRefGoogle Scholar
  26. 26.
    Thunig J, Hansen SH, Janfelt C (2011) Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Anal Chem 83(9):3256–3259CrossRefGoogle Scholar
  27. 27.
    Schramm T, Hester A, Klinkert I, Both J-P, Heeren RMA, Brunelle A, Laprévote O, Desbenoit N, Robbe M-F, Stoeckli M, Spengler B, Römpp A (2012) imzML — a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome 75(16):5106–5110CrossRefGoogle Scholar
  28. 28.
    Janfelt C, Nørgaard AW (2012) Ambient imaging mass spectrometry: a comparison of desorption ionization by sonic spray and electrospray. J Am Soc Mass Spectrom 23(10):1670–1678CrossRefGoogle Scholar
  29. 29.
    Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80(3):539–549Google Scholar
  30. 30.
    Phalaraksh C, Reynolds SE, Wilson ID, Lenz EM, Nicholson JK, Lindon JC (2008) A metabonomic analysis of insect development: H-1-NMR spectroscopic characterization of changes in the composition of the haemolymph of larvae and pupae of the tobacco hornworm, Manduca sexta. Scienceasia 34(3):279–286CrossRefGoogle Scholar
  31. 31.
    Lenz E, Hägele B, Wilson I, Simpson S (2001) High resolution 1H NMR spectroscopic studies of the composition of the haemolymph of crowd-and solitary-reared nymphs of the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 32(1):51–56CrossRefGoogle Scholar
  32. 32.
    Pasilis SP, Kertesz V, Van Berkel GJ (2007) Surface scanning analysis of planar arrays of analytes with desorption electrospray ionization-mass spectrometry. Anal Chem 79(15):5956–5962CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Line Rørbæk Olsen
    • 1
  • Steen Honoré Hansen
    • 1
  • Christian Janfelt
    • 1
  1. 1.Department of Pharmacy, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations