Analytical and Bioanalytical Chemistry

, Volume 407, Issue 15, pp 4261–4275 | Cite as

Nanoparticle tracking analysis characterisation and parts-per-quadrillion determination of fullerenes in river samples from Barcelona catchment area

  • Josep Sanchís
  • Cristina Bosch-Orea
  • Marinella FarréEmail author
  • Damià Barceló
Research Paper
Part of the following topical collections:
  1. Advances in LC-MS/MS Analysis


In the present work, the analysis of seven fullerenes (C60 and C70 fullerenes and five functionalised fullerenes) has been performed in river samples collected in the vicinities of Barcelona (Catalonia, NE of Spain). The results of 48 samples (25 river waters, 12 river sediments and 11 wastewater effluents) are presented. Extracts of river water, river sediments and wastewater effluents were analysed by liquid chromatography (LC), using a pyrenylpropyl group bonded silica based column, coupled to a high-resolution mass spectrometer (HRMS), using a dual ion source, atmospheric pressure photoionisation/atmospheric pressure chemical ionisation source (APPI/APCI). The novel methodology presents good chromatographic separation, excellent selectivity and instrumental limits of quantification (ILOQ) in the femtogram order. Method limits of quantification (MLOQ) ranged from 2.9 to 17 pg/l and from 3.2 to 31 pg/l in surface waters and wastewaters, respectively. In wastewater effluents, the sums of C60 and C70 ranged from 0.5 to 9.3 ng/l. In surface waters, C60 fullerene was the most ubiquitous compound, being detected in 100 % of the samples in concentrations from 31 pg/l to 4.5 ng/l, while C70 concentrations ranged from less than the method limits of detection (MLOD) to 1.5 ng/l. The presence of fullerenes in both the large particulate (diameter Ø > 450 nm) and the colloidal (Ø < 450 nm) fractions of surface waters should be noticed. In sediments, the concentrations of fullerenes were between the MLOD and 34.4 pg/g. In addition, nanoparticle tracking analysis (NTA) was used for the characterisation of water samples in terms of nanoparticle number concentration and size distribution. As far as our knowledge is concerned, this is the first time that NTA has been used for the characterisation of complex river waters with an environmental focus.


Fullerenes C60 C70 River water Wastewater Sediments 



This work was supported by the Spanish Ministerio de Ciencia e Innovación through the project Nano-Trojan CTM2011-24051 and by the Generalitat de Catalunya (Consolidated Research Groups “2014 SGR 418 - Water and Soil Quality Unit” and 2014 SGR 291 - ICRA). The authors would like to express their deepest gratitude to the WWTPs involved in this paper, for their uninterested collaboration with the Nano-Trojan project. Roser Chaler and Dori Fanjul from the IDAEA-CSIC mass spectrometry service are acknowledged for their helpful assistance with the HPLC–HRMS instrumentation.

Conflict of interest

The authors state that there is no conflict of interest.


  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162CrossRefGoogle Scholar
  2. 2.
    Farré M, Sanchís J, Barceló D (2011) TrAC Trends Anal Chem 30:517CrossRefGoogle Scholar
  3. 3.
    Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Environ Sci Technol 45:2562CrossRefGoogle Scholar
  4. 4.
    Montellano A, Da Ros T, Bianco A, Prato M (2011) Nanoscale 3:4035CrossRefGoogle Scholar
  5. 5.
    Agostinelli T, Campoy-Quiles M, Blakesley JC, Speller R, Bradley DDC, Nelson J (2008) Appl Phys Lett 93:203305CrossRefGoogle Scholar
  6. 6.
    Kwag DS, Park K, Oh KT, Lee ES (2013) Chem Commun 49:282CrossRefGoogle Scholar
  7. 7.
    Chikamatsu M, Itakura A, Yoshida Y, Azumi R, Yase K (2008) Chem Mater 20:7365CrossRefGoogle Scholar
  8. 8.
    Hou J, Guo X, in (2013) p. 17Google Scholar
  9. 9.
    Goyal RN, Gupta VK, Sangal A, Bachheti N (2005) Electroanalysis 17:2217CrossRefGoogle Scholar
  10. 10.
    von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans AA, Horne N, Unrine JM (2012) Environ Toxicol Chem 31:32CrossRefGoogle Scholar
  11. 11.
    Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Eur J Pharm Biopharm 72:370CrossRefGoogle Scholar
  12. 12.
    Kim KT, Jang MH, Kim JY, Kim SD (2010) Sci Total Environ 408:5606CrossRefGoogle Scholar
  13. 13.
    Kim KT, Jang MH, Kim JY, Xing B, Tanguay RL, Lee BG, Kim SD (2012) Sci Total Environ 426:423CrossRefGoogle Scholar
  14. 14.
    Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughes JB (2005) Environ Toxicol Chem 24:2757CrossRefGoogle Scholar
  15. 15.
    Tao X, He Y, Zhang B, Chen Y, Hughes JB (2011) J Environ Sci 23:322CrossRefGoogle Scholar
  16. 16.
    Tervonen K, Waissi G, Petersen EJ, Akkanen J, Kukkonen JVK (2011) Environ Toxicol Chem 29:1072Google Scholar
  17. 17.
    Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Carbon 44:1112CrossRefGoogle Scholar
  18. 18.
    Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJJ (2007) Environ Toxicol Chem 26:976CrossRefGoogle Scholar
  19. 19.
    Azevedo Costa CL, Chaves IS, Ventura-Lima J, Ferreira JLR, Ferraz L, De Carvalho LM, Monserrat JM (2012) Comp Biochem Physiol C Toxicol Pharmacol 155:206CrossRefGoogle Scholar
  20. 20.
    Chen Z, Westerhoff P, Herckes P (2008) Environ Toxicol Chem 27:1852CrossRefGoogle Scholar
  21. 21.
    Bouchard D, Ma X (2008) J Chromatogr A 1203:153CrossRefGoogle Scholar
  22. 22.
    Wang C, Shang C, Westerhoff P (2010) Chemosphere 80:334CrossRefGoogle Scholar
  23. 23.
    Xiao Y, Chae S-R, Wiesner MR (2011) Chem Eng J 170:555CrossRefGoogle Scholar
  24. 24.
    Kolkman A, Emke E, Bäuerlein PS, Carboni A, Tran DT, ter Laak TL, van Wezel AP, de Voogt P (2013) Anal Chem 85:5867CrossRefGoogle Scholar
  25. 25.
    Farré M, Pérez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda Martí A, Barceló D (2010) J Hydrol 383:44CrossRefGoogle Scholar
  26. 26.
    Sanchís J, Božović D, Al-Harbi NA, Silva LF, Farré M, Barceló D (2013) Anal Bioanal Chem 405:5915CrossRefGoogle Scholar
  27. 27.
    Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Anal Chem 79:9091CrossRefGoogle Scholar
  28. 28.
    Sanchís J, Berrojalbiz N, Caballero G, Dachs J, Farré M, Barceló D (2012) Environ Sci Technol 46:1335CrossRefGoogle Scholar
  29. 29.
    Sanchís J, Martínez E, Ginebreda A, Farré M, Barceló D (2013) Sci Total Environ 443:530CrossRefGoogle Scholar
  30. 30.
    van Wezel AP, Morinière V, Emke E, ter Laak T, Hogenboom AC (2011) Environ Int 37:1063CrossRefGoogle Scholar
  31. 31.
    Núñez Ó, Gallart-Ayala H, Martins CPB, Moyano E, Galceran MT (2012) Anal Chem 84:5316CrossRefGoogle Scholar
  32. 32.
    Xie SY, Deng SL, Yu LJ, Huang RB, Zheng LS (2001) J Chromatogr A 932:43CrossRefGoogle Scholar
  33. 33.
    Pakarinen K, Petersen EJ, Leppãnen MT, Akkanen J, Kukkonen JVK (2011) Environ Pollut 159:3750CrossRefGoogle Scholar
  34. 34.
    Chen HC, Ding WH (2012) J Chromatogr A 1223:15CrossRefGoogle Scholar
  35. 35.
    E. Comission in, (2002) 2002/657/EC: “Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results”Google Scholar
  36. 36.
    Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G, Capracotta S, Magdolenova Z, Horev-Azaria L, Dybowska A (2013) J Nanoparticle Res 15:1CrossRefGoogle Scholar
  37. 37.
    Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Environ Sci Technol 43:9216CrossRefGoogle Scholar
  38. 38.
    Gasith A, Resh VH (1999) Annu Rev Ecol Syst 30:51CrossRefGoogle Scholar
  39. 39.
    Navarro-Ortega A, Acuña V, Batalla RJ, Blasco J, Conde C, Elorza FJ, Elosegi A, Francés F, La-Roca F, Muñoz I (2011) Environ Sci Pollut Res 19:918CrossRefGoogle Scholar
  40. 40.
    Zhu X, Zhu L, Lang Y, Chen Y (2008) Environ Toxicol Chem 27:1979CrossRefGoogle Scholar
  41. 41.
    Howard JB, McKinnon JT, Johnson ME, Makarovsky Y, Lafleur AL (1992) J Phys Chem 96:6657CrossRefGoogle Scholar
  42. 42.
    Quik JTK, Velzeboer I, Wouterse M, Koelmans AA, van de Meent D (2014) Water Res 48:269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Josep Sanchís
    • 1
  • Cristina Bosch-Orea
    • 1
  • Marinella Farré
    • 1
    Email author
  • Damià Barceló
    • 1
    • 2
  1. 1.Water and Soil Quality Research GroupInstitute of Environmental Assessment and Water Research (IDAEA-CSIC)BarcelonaSpain
  2. 2.Catalan Institute of Water Research (ICRA)GironaSpain

Personalised recommendations