Analytical and Bioanalytical Chemistry

, Volume 407, Issue 2, pp 405–414 | Cite as

Applying ‘Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra’ (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry

  • Kathrin Arnhard
  • Anna Gottschall
  • Florian Pitterl
  • Herbert Oberacher
Research Paper

Abstract

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become an indispensable analytical technique in clinical and forensic toxicology for detection and identification of potentially toxic or harmful compounds. Particularly, non-target LC-MS/MS assays enable extensive and universal screening requested in systematic toxicological analysis. An integral part of the identification process is the generation of information-rich product ion spectra which can be searched against libraries of reference mass spectra. Usually, ‘data-dependent acquisition’ (DDA) strategies are applied for automated data acquisition. In this study, the ‘data-independent acquisition’ (DIA) method ‘Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra’ (SWATH) was combined with LC-MS/MS on a quadrupole-quadrupole-time-of-flight (QqTOF) instrument for acquiring informative high-resolution tandem mass spectra. SWATH performs data-independent fragmentation of all precursor ions entering the mass spectrometer in 21m/z isolation windows. The whole m/z range of interest is covered by continuous stepping of the isolation window. This allows numerous repeat analyses of each window during the elution of a single chromatographic peak and results in a complete fragment ion map of the sample. Compounds and samples typically encountered in forensic casework were used to assess performance characteristics of LC-MS/MS with SWATH. Our experiments clearly revealed that SWATH is a sensitive and specific identification technique. SWATH is capable of identifying more compounds at lower concentration levels than DDA does. The dynamic range of SWATH was estimated to be three orders of magnitude. Furthermore, the >600,000 SWATH spectra matched led to only 408 incorrect calls (false positive rate = 0.06 %). Deconvolution of generated ion maps was found to be essential for unravelling the full identification power of LC-MS/MS with SWATH. With the available software, however, only semi-automated deconvolution was enabled, which rendered data interpretation a laborious and time-consuming process.

Graphical Abstract

High-resolution LC-MS/MS with SWATH represents a sensitive and specific compound identification tool that has vast potential to become a leading technique in systematic toxicological analysis. SWATH solves the problem of unused precursor ions often encountered with data-dependent acquisition methods by acquiring complete fragment ion maps of a sample

Keywords

Systematic toxicological analysis Information-dependent acquisition control Information-independent acquisition control Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH) Liquid chromatography-tandem mass spectrometry Tandem mass spectral library 

Supplementary material

216_2014_8262_MOESM1_ESM.pdf (227 kb)
ESM 1(PDF 226 kb)

References

  1. 1.
    Maurer HH (2013) What is the future of (ultra) high performance liquid chromatography coupled to low and high resolution mass spectrometry for toxicological drug screening? J Chromatogr A 1292:19–24. doi:10.1016/j.chroma.2012.08.069 CrossRefGoogle Scholar
  2. 2.
    Peters FT (2011) Recent advances of liquid chromatography–(tandem) mass spectrometry in clinical and forensic toxicology. Clin Biochem 44:54–65. doi:10.1016/j.clinbiochem.2010.08.008 CrossRefGoogle Scholar
  3. 3.
    Kraemer T, Paul LD (2007) Bioanalytical procedures for determination of drugs of abuse in blood. Anal Bioanal Chem 388(7):1415–1435. doi:10.1007/s00216-007-1271-6 CrossRefGoogle Scholar
  4. 4.
    Dresen S, Ferreirós N, Gnann H, Zimmermann R, Weinmann W (2010) Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP® LC-MS/MS system and library searching. Anal Bioanal Chem 396:2425–2434. doi:10.1007/s00216-010-3485-2 CrossRefGoogle Scholar
  5. 5.
    Remane D, Wetzel D, Peters FT (2014) Development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) procedure for screening of urine specimens for 100 analytes relevant in drug-facilitated crime (DFC). Anal Bioanal Chem 406:4411–4424. doi:10.1007/s00216-014-7841-5 CrossRefGoogle Scholar
  6. 6.
    Oberacher H, Schubert B, Libiseller K, Schweissgut A (2013) Detection and identification of drugs and toxicants in human body fluids by liquid chromatography-tandem mass spectrometry under data-dependent acquisition control and automated database search. Anal Chim Acta 770:121–131. doi:10.1016/j.aca.2013.01.057 CrossRefGoogle Scholar
  7. 7.
    Wissenbach DK, Meyer MR, Remane D, Weber AA, Maurer HH (2011) Development of the first metabolite-based LC-MSn urine drug screening procedure-exemplified for antidepressants. Anal Bioanal Chem 400:79–88. doi:10.1007/s00216-010-4398-9 CrossRefGoogle Scholar
  8. 8.
    Broecker S, Herre S, Wüst B, Zweigenbaum J, Pragst F (2011) Development and practical application of a library of CID accurate mass spectra of more than 2,500 toxic compounds for systematic toxicological analysis by LC–QTOF-MS with data-dependent acquisition. Anal Bioanal Chem 400:101–117. doi:10.1007/s00216-010-4450-9 CrossRefGoogle Scholar
  9. 9.
    Saint-Marcoux F, Lachâtre G, Marquet P (2003) Evaluation of an improved general unknown screening procedure using liquid-chromatography-electrospray-mass spectrometry by comparison with gas chromatography and high-performance liquid-chromatography—diode array detection. J Am Soc Mass Spectrom 14:14–22. doi:10.1016/S1044-0305(02)00801-2 CrossRefGoogle Scholar
  10. 10.
    Decaestecker TN, Vande Casteele SR, Wallemacq PE, Van Peteghem CH, Defore DL, Van Bocxlaer JF (2004) Information-dependent acquisition-mediated LC−MS/MS screening procedure with semiquantitative potential. Anal Chem 76(21):6365–6373. doi:10.1021/ac0492315 CrossRefGoogle Scholar
  11. 11.
    Weinmann W, Wiedemann A, Eppinger B, Renz M, Svoboda M (1999) Screening for drugs in serum by electrospray ionization/collision-induced dissociation and library searching. J Am Soc Mass Spectrom 10:1028–1037. doi:10.1016/S1044-0305(99)00070-7 CrossRefGoogle Scholar
  12. 12.
    Fitzgerald RL, Rivera JD, Herold DA (1999) Broad spectrum drug identification directly from urine, using liquid chromatography-tandem mass spectrometry. Clin Chem 45:1224–1234Google Scholar
  13. 13.
    Oberacher H, Pavlic M, Libiseller K, Schubert B, Sulyok M, Schuhmacher R, Csaszar E, Kofeler HC (2009) On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. Results of an Austrian multicenter study. J Mass Spectrom 44:485–493. doi:10.1002/jms.1545 CrossRefGoogle Scholar
  14. 14.
    Oberacher H, Pavlic M, Libiseller K, Schubert B, Sulyok M, Schuhmacher R, Csaszar E, Kofeler HC (2009) On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library: 2. Optimization and characterization of the search algorithm. J Mass Spectrom 44:494–502. doi:10.1002/jms.1525 CrossRefGoogle Scholar
  15. 15.
    Oberacher H, Pitterl F, Siapi E, Steele BR, Letzel T, Grosse S, Poschner B, Tagliaro F, Gottardo R, Chacko SA, Josephs JL (2012) On the inter-instrument and the inter-laboratory transferability of a tandem mass spectral reference library. 3. Focus on ion trap and upfront CID. J Mass Spectrom 47(2):263–270. doi:10.1002/jms.2961 CrossRefGoogle Scholar
  16. 16.
    Oberacher H, Weinmann W, Dresen S (2011) Quality evaluation of tandem mass spectral libraries. Anal Bioanal Chem 400:2641–2648. doi:10.1007/s00216-010-4598-3 CrossRefGoogle Scholar
  17. 17.
    Oberacher H, Whitley G, Berger B (2013) Evaluation of the sensitivity of the 'Wiley Registry of Tandem Mass Spectral Data, MSforID' with MS/MS data of the 'NIST/NIH/EPA Mass Spectral Library'. J Mass Spectrom 48:487–496. doi:10.1002/jms.3184 CrossRefGoogle Scholar
  18. 18.
    Oberacher H, Whitley G, Berger B, Weinmann W (2013) Testing an alternative search algorithm for compound identification with the 'Wiley Registry of Tandem Mass Spectral Data, MSforID'. J Mass Spectrom 48:497–504. doi:10.1002/jms.3185 CrossRefGoogle Scholar
  19. 19.
    Wurtinger P, Oberacher H (2012) Evaluation of the performance of a tandem mass spectral library with mass spectral data extracted from literature. Drug Test Anal 4:235–241. doi:10.1002/dta.341 CrossRefGoogle Scholar
  20. 20.
    Chapman JD, Goodlett DR, Masselon CD (2013) Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Mass Spectrom Rev, in press. doi:10.1002/mas.21400
  21. 21.
    Wang N, Li L (2008) Exploring the precursor ion exclusion feature of liquid chromatography–electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis. Anal Chem 80:4696–4710. doi:10.1021/ac800260w CrossRefGoogle Scholar
  22. 22.
    Purvine S, Eppel JT, Yi EC, Goodlett DR (2003) Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3:847–850. doi:10.1002/pmic.200300362 CrossRefGoogle Scholar
  23. 23.
    Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1:39–45. doi:10.1038/nmeth705 CrossRefGoogle Scholar
  24. 24.
    Wrona M, Mauriala T, Bateman KP, Mortishire-Smith RJ, O’Connor D (2005) ‘All-in-One’ analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Commun Mass Spectrom 19:2597–2602. doi:10.1002/rcm.2101 CrossRefGoogle Scholar
  25. 25.
    Panchaud A, Scherl A, Shaffer SA, von Haller PD, Kulasekara HD, Miller SI, Goodlett DR (2009) Precursor acquisition independent from ion count: how to dive deeper into the proteomics ocean. Anal Chem 81:6481–6488. doi:10.1021/ac900888s CrossRefGoogle Scholar
  26. 26.
    Geiger T, Cox J, Mann M (2010) Proteomics on an Orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics 9:2252–2261. doi:10.1074/mcp.M110.001537 CrossRefGoogle Scholar
  27. 27.
    Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717. doi:10.1074/mcp.O111.016717 CrossRefGoogle Scholar
  28. 28.
    Bateman KP, Castro-Perez J, Wrona M, Shockcor JP, Yu K, Oballa R, Nicoll-Griffith DA (2007) MSE with mass defect filtering for in vitro and in vivo metabolite identification. Rapid Commun Mass Spectrom 21:1485–1496. doi:10.1002/rcm.2996 CrossRefGoogle Scholar
  29. 29.
    Monaci L, De Angelis E, Visconti A (2011) Determination of deoxynivalenol, T-2 and HT-2 toxins in a bread model food by liquid chromatography–high resolution-Orbitrap-mass spectrometry equipped with a high-energy collision dissociation cell. J Chromatogr A 1218:8646–8654. doi:10.1016/j.chroma.2011.10.008 CrossRefGoogle Scholar
  30. 30.
    Bird SS, Marur VR, Stavrovskaya IG, Kristal BS (2013) Qualitative characterization of the rat liver mitochondrial lipidome using LC-MS profiling and high energy collisional dissociation (HCD) all ion fragmentation. Metabolomics 9:67–83. doi:10.1007/s11306-012-0400-1 CrossRefGoogle Scholar
  31. 31.
    Barbara JE, Castro-Perez JM (2011) High-resolution chromatography/time-of-flight MSE with in silico data mining is an information-rich approach to reactive metabolite screening. Rapid Commun Mass Spectrom 25:3029–3040. doi:10.1002/rcm.5197 CrossRefGoogle Scholar
  32. 32.
    Dalsgaard PW, Rode AJ, Pedersen AJ, Rasmussen BS, Windberg CN, Linnet K (2013) Screening of 30 acidic and neutral pharmaceuticals in whole blood by fully automated SPE and UPLC-TOF-MSE. Drug Test Anal 5:254–258. doi:10.1002/dta.1442 CrossRefGoogle Scholar
  33. 33.
    Pedersen AJ, Dalsgaard PW, Rode AJ, Rasmussen BS, Muller IB, Johansen SS, Linnet K (2013) Screening for illicit and medicinal drugs in whole blood using fully automated SPE and ultra-high-performance liquid chromatography with TOF-MS with data-independent acquisition. J Sep Sci 36:2081–2089. doi:10.1002/jssc.201200921 CrossRefGoogle Scholar
  34. 34.
    Chindarkar NS, Wakefield MR, Stone JA, Fitzgerald RL (2014) Liquid chromatography high-resolution TOF analysis: investigation of MSE for broad-spectrum drug screening. Clin Chem 60:1115–1125. doi:10.1373/clinchem.2014.222976 CrossRefGoogle Scholar
  35. 35.
    Rosano TG, Wood M, Ihenetu K, Swift TA (2013) Drug screening in medical examiner casework by high-resolution mass spectrometry (UPLC-MSE-TOF). J Anal Toxicol 37:580–593. doi:10.1093/jat/bkt071 CrossRefGoogle Scholar
  36. 36.
    Hopfgartner G, Tonoli D, Varesio E (2012) High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Anal Bioanal Chem 402:2587–2596. doi:10.1007/s00216-011-5641-8 CrossRefGoogle Scholar
  37. 37.
    Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719. doi:10.1002/pmic.200800564 CrossRefGoogle Scholar
  38. 38.
    Carvalho PC, Han X, Xu T, Cociorva D, Carvalho Mda G, Barbosa VC, Yates JR (2010) XDIA: improving on the label-free data-independent analysis. Bioinformatics 26:847–848. doi:10.1093/bioinformatics/btq031 CrossRefGoogle Scholar
  39. 39.
    Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE (2012) Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification. J Proteome Res 11:1621–1632. doi:10.1021/pr2008175 CrossRefGoogle Scholar
  40. 40.
    Collins BC, Gillet LC, Rosenberger G, Rost HL, Vichalkovski A, Gstaiger M, Aebersold R (2013) Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat Methods 10:1246–1253. doi:10.1038/nmeth.2703 CrossRefGoogle Scholar
  41. 41.
    Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, Gillet LC, Wollscheid B, Zhang H, Aebersold R (2014) Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics 13:1753–1768. doi:10.1074/mcp.M114.038273 CrossRefGoogle Scholar
  42. 42.
    Liu Y, Huttenhain R, Surinova S, Gillet LC, Mouritsen J, Brunner R, Navarro P, Aebersold R (2013) Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS. Proteomics 13:1247–1256. doi:10.1002/pmic.201200417 CrossRefGoogle Scholar
  43. 43.
    Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM, Schubert OT, Wolski W, Collins BC, Malmstrom J, Malmstrom L, Aebersold R (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223. doi:10.1038/nbt.2841 CrossRefGoogle Scholar
  44. 44.
    Zhu X, Chen Y, Subramanian R (2014) Comparison of information-dependent acquisition, SWATH, and MSAll techniques in metabolite identification study employing ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Chem 86:1202–1209. doi:10.1021/ac403385y CrossRefGoogle Scholar
  45. 45.
    Siegel D, Meinema AC, Permentier H, Hopfgartner G, Bischoff R (2014) Integrated quantification and identification of aldehydes and ketones in biological samples. Anal Chem 86:5089–5100. doi:10.1021/ac500810r CrossRefGoogle Scholar
  46. 46.
    Oberacher H (2011) Wiley Registry of Tandem Mass Spectral Data, MSforID. Hoboken, Wiley, ISBN: 978-1-118-03744-7Google Scholar
  47. 47.
    Pavlic M, Libiseller K, Oberacher H (2006) Combined use of ESI-QqTOF-MS and ESI-QqTOF-MS/MS with mass-spectral library search for qualitative analysis of drugs. Anal Bioanal Chem 386:69–82. doi:10.1007/s00216-006-0634-8 CrossRefGoogle Scholar
  48. 48.
    Pavlic M, Schubert B, Libiseller K, Oberacher H (2010) Comprehensive identification of active compounds in tablets by flow-injection data-dependent tandem mass spectrometry combined with library search. Forensic Sci Int 197:40–47. doi:10.1016/j.forsciint.2009.12.019 CrossRefGoogle Scholar
  49. 49.
    Schubert B, Oberacher H (2011) Impact of solvent conditions on separation and detection of basic drugs by micro liquid chromatography-mass spectrometry under overloading conditions. J Chromatogr A 1218:3413–3422. doi:10.1016/j.chroma.2011.03.051 CrossRefGoogle Scholar
  50. 50.
    Houel S, Abernathy R, Renganathan K, Meyer-Arendt K, Ahn NG, Old WM (2010) Quantifying the impact of chimera MS/MS spectra on peptide identification in large-scale proteomics studies. J Proteome Res 9:4152–4160. doi:10.1021/pr1003856 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kathrin Arnhard
    • 1
  • Anna Gottschall
    • 1
  • Florian Pitterl
    • 1
  • Herbert Oberacher
    • 1
  1. 1.Institute of Legal Medicine and Core Facility MetabolomicsMedical University of InnsbruckInnsbruckAustria

Personalised recommendations