Analytical and Bioanalytical Chemistry

, Volume 407, Issue 8, pp 2073–2084 | Cite as

Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization

  • Mark T. Bokhart
  • Elias Rosen
  • Corbin Thompson
  • Craig Sykes
  • Angela D. M. Kashuba
  • David C. Muddiman
Research Paper
Part of the following topical collections:
  1. Mass Spectrometry Imaging


A quantitative mass spectrometry imaging (QMSI) technique using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is demonstrated for the antiretroviral (ARV) drug emtricitabine in incubated human cervical tissue. Method development of the QMSI technique leads to a gain in sensitivity and removal of interferences for several ARV drugs. Analyte response was significantly improved by a detailed evaluation of several cationization agents. Increased sensitivity and removal of an isobaric interference was demonstrated with sodium chloride in the electrospray solvent. Voxel-to-voxel variability was improved for the MSI experiments by normalizing analyte abundance to a uniformly applied compound with similar characteristics to the drug of interest. Finally, emtricitabine was quantified in tissue with a calibration curve generated from the stable isotope-labeled analog of emtricitabine followed by cross-validation using liquid chromatography tandem mass spectrometry (LC-MS/MS). The quantitative IR-MALDESI analysis proved to be reproducible with an emtricitabine concentration of 17.2 ± 1.8 μg/gtissue. This amount corresponds to the detection of 7 fmol/voxel in the IR-MALDESI QMSI experiment. Adjacent tissue slices were analyzed using LC-MS/MS which resulted in an emtricitabine concentration of 28.4 ± 2.8 μg/gtissue.


Mass spectrometry imaging IR-MALDESI Absolute quantification Drug distribution HIV Selected reaction monitoring 



The authors gratefully acknowledge the financial support from the National Institutes of Health (R01GM087964), the W.M. Keck Foundation, and North Carolina State University.

Supplementary material

216_2014_8220_MOESM1_ESM.pdf (509 kb)
ESM 1 (PDF 509 kb)


  1. 1.
    Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760CrossRefGoogle Scholar
  2. 2.
    Prideaux B, Staab D, Stoeckli M (2010) Applications of MALDI-MSI to pharmaceutical research. Methods Mol Biol 656:405–413. doi: 10.1007/978-1-60761-746-4_23 CrossRefGoogle Scholar
  3. 3.
    Prideaux B, Stoeckli M (2012) Mass spectrometry imaging for drug distribution studies. J Proteome 75(16):4999–5013. doi: 10.1016/j.jprot.2012.07.028 CrossRefGoogle Scholar
  4. 4.
    Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12(1):11–26. doi: 10.1208/s12248-009-9158-4 CrossRefGoogle Scholar
  5. 5.
    Cohen MS, Gay C, Kashuba ADM, Blower S, Paxton L (2007) Narrative review: antiretroviral therapy to prevent the sexual transmission of HIV-1. Ann Intern Med 146(8):591–601. doi: 10.7326/0003-4819-146-8-200704170-00010 CrossRefGoogle Scholar
  6. 6.
    Xu RN, Fan L, Rieser MJ, El-Shourbagy TA (2007) Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS. J Pharm Biomed Anal 44(2):342–355. doi: 10.1016/j.jpba.2007.02.006 CrossRefGoogle Scholar
  7. 7.
    Drexler DM, Tannehill-Gregg SH, Wang L, Brock BJ (2011) Utility of quantitative whole-body autoradiography (QWBA) and imaging mass spectrometry (IMS) by matrix-assisted laser desorption/ionization (MALDI) in the assessment of ocular distribution of drugs. J Pharmacol Toxicol Methods 63(2):205–208. doi: 10.1016/j.vascn.2010.10.003 CrossRefGoogle Scholar
  8. 8.
    Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2(2):123–131. doi: 10.1038/nrd1007 CrossRefGoogle Scholar
  9. 9.
    Barry JA, Groseclose MR, Robichaud G, Castellino S, Muddiman DC (2014) Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. Int J Mass Spectrom. doi: 10.1016/j.ijms.2014.05.012 Google Scholar
  10. 10.
    Bunch J, Clench MR, Richards DS (2004) Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 18(24):3051–3060. doi: 10.1002/rcm.1725 CrossRefGoogle Scholar
  11. 11.
    Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6(11):1695–1709. doi: 10.1038/nprot.2011.388 CrossRefGoogle Scholar
  12. 12.
    Djidja MC, Chang J, Hadjiprocopis A, Schmich F, Sinclair J, Mrsnik M, Schoof EM, Barker HE, Linding R, Jorgensen C, Erler JT (2014) Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics. J Proteome Res. doi: 10.1021/pr401056c Google Scholar
  13. 13.
    Drexler DM, Garrett TJ, Cantone JL, Diters RW, Mitroka JG, Prieto Conaway MC, Adams SP, Yost RA, Sanders M (2007) Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J Pharmacol Toxicol Methods 55(3):279–288. doi: 10.1016/j.vascn.2006.11.004 CrossRefGoogle Scholar
  14. 14.
    Fehniger TE, Vegvari A, Rezeli M, Prikk K, Ross P, Dahlback M, Edula G, Sepper R, Marko-Varga G (2011) Direct demonstration of tissue uptake of an inhaled drug: proof-of-principle study using matrix-assisted laser desorption ionization mass spectrometry imaging. Anal Chem 83(21):8329–8336. doi: 10.1021/ac2014349 CrossRefGoogle Scholar
  15. 15.
    Goodwin RJ, Mackay CL, Nilsson A, Harrison DJ, Farde L, Andren PE, Iverson SL (2011) Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal Chem 83(24):9694–9701. doi: 10.1021/ac202630t CrossRefGoogle Scholar
  16. 16.
    Goto T, Terada N, Inoue T, Nakayama K, Okada Y, Yoshikawa T, Miyazaki Y, Uegaki M, Sumiyoshi S, Kobayashi T, Kamba T, Yoshimura K, Ogawa O (2014) The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential biomarker for prostate cancer. PLoS One 9(2):e90242. doi: 10.1371/journal.pone.0090242 CrossRefGoogle Scholar
  17. 17.
    Groseclose MR, Castellino S (2013) A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem 85(21):10099–10106. doi: 10.1021/ac400892z CrossRefGoogle Scholar
  18. 18.
    Hamm G, Bonnel D, Legouffe R, Pamelard F, Delbos JM, Bouzom F, Stauber J (2012) Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J Proteome 75(16):4952–4961. doi: 10.1016/j.jprot.2012.07.035 CrossRefGoogle Scholar
  19. 19.
    Handberg E, Chingin K, Wang N, Dai X, Chen H (2014) Mass spectrometry imaging for visualizing organic analytes in food. Mass Spectrom Rev. doi: 10.1002/mas.21424 Google Scholar
  20. 20.
    Hsieh Y, Casale R, Fukuda E, Chen J, Knemeyer I, Wingate J, Morrison R, Korfmacher W (2006) Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom 20(6):965–972. doi: 10.1002/rcm.2397 CrossRefGoogle Scholar
  21. 21.
    Hsieh Y, Chen J, Korfmacher WA (2007) Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry. J Pharmacol Toxicol Methods 55(2):193–200. doi: 10.1016/j.vascn.2006.06.004 CrossRefGoogle Scholar
  22. 22.
    Koeniger SL, Talaty N, Luo Y, Ready D, Voorbach M, Seifert T, Cepa S, Fagerland JA, Bouska J, Buck W, Johnson RW, Spanton S (2011) A quantitation method for mass spectrometry imaging. Rapid Commun Mass Spectrom 25(4):503–510. doi: 10.1002/rcm.4891 CrossRefGoogle Scholar
  23. 23.
    Kubo A, Kajimura M, Suematsu M (2012) Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS): a challenge for reliable quantitative analyses. Mass Spectrom (Tokyo) 1(1):A0004. doi: 10.5702/massspectrometry.A0004 Google Scholar
  24. 24.
    Lietz CB, Gemperline E, Li LJ (2013) Qualitative and quantitative mass spectrometry imaging of drugs and metabolites. Adv Drug Deliv Rev 65(8):1074–1085. doi: 10.1016/j.addr.2013.04.009 CrossRefGoogle Scholar
  25. 25.
    Nilsson A, Fehniger TE, Gustavsson L, Andersson M, Kenne K, Marko-Varga G, Andren PE (2010) Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS One 5(7):e11411. doi: 10.1371/journal.pone.0011411 CrossRefGoogle Scholar
  26. 26.
    Pirman DA, Kiss A, Heeren RM, Yost RA (2013) Identifying tissue-specific signal variation in MALDI mass spectrometric imaging by use of an internal standard. Anal Chem 85(2):1090–1096. doi: 10.1021/ac3029618 CrossRefGoogle Scholar
  27. 27.
    Pirman DA, Reich RF, Kiss A, Heeren RM, Yost RA (2013) Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal Chem 85(2):1081–1089. doi: 10.1021/ac302960j CrossRefGoogle Scholar
  28. 28.
    Pirman DA, Yost RA (2011) Quantitative tandem mass spectrometric imaging of endogenous acetyl-L-carnitine from piglet brain tissue using an internal standard. Anal Chem 83(22):8575–8581. doi: 10.1021/ac201949b CrossRefGoogle Scholar
  29. 29.
    Prideaux B, Dartois V, Staab D, Weiner DM, Goh A, Via LE, Barry CE 3rd, Stoeckli M (2011) High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem 83(6):2112–2118. doi: 10.1021/ac1029049 CrossRefGoogle Scholar
  30. 30.
    Shin YG, Dong T, Chou B, Menghrajani K (2011) Determination of loperamide in mdr1a/1b knock-out mouse brain tissue using matrix-assisted laser desorption/ionization mass spectrometry and comparison with quantitative electrospray-triple quadrupole mass spectrometry analysis. Arch Pharm Res 34(11):1983–1988. doi: 10.1007/s12272-011-1119-7 CrossRefGoogle Scholar
  31. 31.
    Signor L, Varesio E, Staack RF, Starke V, Richter WF, Hopfgartner G (2007) Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J Mass Spectrom 42(7):900–909. doi: 10.1002/jms.1225 CrossRefGoogle Scholar
  32. 32.
    Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260(2–3):195–202. doi: 10.1016/j.ijms.2006.10.007 CrossRefGoogle Scholar
  33. 33.
    Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 50(9):1776–1788. doi: 10.1194/jlr.M900047-JLR200 CrossRefGoogle Scholar
  34. 34.
    Sun N, Walch A (2013) Qualitative and quantitative mass spectrometry imaging of drugs and metabolites in tissue at therapeutic levels. Histochem Cell Biol 140(2):93–104. doi: 10.1007/s00418-013-1127-4 CrossRefGoogle Scholar
  35. 35.
    Takai N, Tanaka Y, Inazawa K, Saji H (2012) Quantitative analysis of pharmaceutical drug distribution in multiple organs by imaging mass spectrometry. Rapid Commun Mass Spectrom 26(13):1549–1556. doi: 10.1002/rcm.6256 CrossRefGoogle Scholar
  36. 36.
    Trede D, Schiffler S, Becker M, Wirtz S, Steinhorst K, Strehlow J, Aichler M, Kobarg JH, Oetjen J, Dyatlov A, Heldmann S, Walch A, Thiele H, Maass P, Alexandrov T (2012) Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: three-dimensional spatial segmentation of mouse kidney. Anal Chem 84(14):6079–6087. doi: 10.1021/ac300673y CrossRefGoogle Scholar
  37. 37.
    Velickovi XD, Ropartz D, Guillon F, Saulnier L, Rogniaux H (2014) New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. J Exp Bot. doi: 10.1093/jxb/eru065 Google Scholar
  38. 38.
    Ellis SR, Bruinen AL, Heeren RM (2014) A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal Bioanal Chem 406(5):1275–1289. doi: 10.1007/s00216-013-7478-9 CrossRefGoogle Scholar
  39. 39.
    Nemes P, Vertes A (2012) Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. TrAC Trends Anal Chem 34:22–34. doi: 10.1016/j.trac.2011.11.006 CrossRefGoogle Scholar
  40. 40.
    Cohen LH, Gusev AI (2002) Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 373(7):571–586. doi: 10.1007/s00216-002-1321-z CrossRefGoogle Scholar
  41. 41.
    Sampson JS, Hawkridge AM, Muddiman DC (2006) Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 17(12):1712–1716. doi: 10.1016/j.jasms.2006.08.003 CrossRefGoogle Scholar
  42. 42.
    Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106CrossRefGoogle Scholar
  43. 43.
    Brady JJ, Judge EJ, Levis RJ (2009) Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization. Rapid Commun Mass Spectrom 23(19):3151–3157. doi: 10.1002/rcm.4226 CrossRefGoogle Scholar
  44. 44.
    Robichaud G, Barry JA, Muddiman DC (2014) IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectrom 25(3):319–328. doi: 10.1007/s13361-013-0787-6 CrossRefGoogle Scholar
  45. 45.
    Flanigan PM, Perez JJ, Karki S, Levis RJ (2013) Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometry. Anal Chem 85(7):3629–3637. doi: 10.1021/ac303443q CrossRefGoogle Scholar
  46. 46.
    Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, Kottilil S, Moir S, Mican JM, Mullins JI, Ward DJ, Kovacs JA, Mannon PJ, Fauci AS (2008) Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis 197(5):714–720. doi: 10.1086/527324 CrossRefGoogle Scholar
  47. 47.
    Launay O, Tod M, Tschope I, Si-Mohamed A, Belarbi L, Charpentier C, Goujard C, Taburet A-M, Lortholary O, Leroy V, Belec L. Residual HIV-1 RNA and HIV-1 DNA production in the genital tract reservoir of women treated with HAART: the prospective ANRS EP24 GYNODYN study. (2040–2058 (electronic))Google Scholar
  48. 48.
    <////Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents.pdf>Google Scholar
  49. 49.
    Barry JA, Robichaud G, Bokhart MT, Thompson C, Sykes C, Kashuba AD, Muddiman DC (2014) Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q exactive and comparison with LC-MS/MS SRM assay. J Am Soc Mass Spectrom. doi: 10.1007/s13361-014-0884-1 Google Scholar
  50. 50.
    Barry JA, Muddiman DC (2011) Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun Mass Spectrom 25(23):3527–3536. doi: 10.1002/rcm.5262 CrossRefGoogle Scholar
  51. 51.
    Sampson JS, Hawkridge AM, Muddiman DC (2008) Development and characterization of an ionization technique for analysis of biological macromolecules: liquid matrix-assisted laser desorption electrospray ionization. Anal Chem 80:6773–6778CrossRefGoogle Scholar
  52. 52.
    Robichaud G, Barry JA, Garrard KP, Muddiman DC (2013) Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J Am Soc Mass Spectrom 24(1):92–100. doi: 10.1007/s13361-012-0505-9 CrossRefGoogle Scholar
  53. 53.
    Jurchen JC, Rubakhin SS, Sweedler JV (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16(10):1654–1659. doi: 10.1016/j.jasms.2005.06.006 CrossRefGoogle Scholar
  54. 54.
    Olsen JV, Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021CrossRefGoogle Scholar
  55. 55.
    Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536. doi: 10.1093/bioinformatics/btn323 CrossRefGoogle Scholar
  56. 56.
    Schramm T, Hester A, Klinkert I, Both JP, Heeren RM, Brunelle A, Laprevote O, Desbenoit N, Robbe MF, Stoeckli M, Spengler B, Rompp A (2012) imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome 75(16):5106–5110. doi: 10.1016/j.jprot.2012.07.026 CrossRefGoogle Scholar
  57. 57.
    Robichaud G, Garrard KP, Barry JA, Muddiman DC (2013) MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom 24(5):718–721. doi: 10.1007/s13361-013-0607-z CrossRefGoogle Scholar
  58. 58.
    Wang Z, Tang J, Salomon CE, Dreis CD, Vince R (2010) Pharmacophore and structure-activity relationships of integrase inhibition within a dual inhibitor scaffold of HIV reverse transcriptase and integrase. Bioorg Med Chem 18(12):4202–4211. doi: 10.1016/j.bmc.2010.05.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mark T. Bokhart
    • 1
  • Elias Rosen
    • 1
  • Corbin Thompson
    • 2
  • Craig Sykes
    • 2
  • Angela D. M. Kashuba
    • 2
  • David C. Muddiman
    • 1
  1. 1.W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of ChemistryNorth Carolina State UniversityRaleighUSA
  2. 2.Eshelman School of PharmacyThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations