Analytical and Bioanalytical Chemistry

, Volume 406, Issue 29, pp 7623–7632 | Cite as

Development of a fast and selective UHPLC-DAD-QTOF-MS/MS method for the qualitative and quantitative assessment of destruxin profiles

  • Judith Taibon
  • Sonja Sturm
  • Christoph Seger
  • Martin Parth
  • Hermann Strasser
  • Hermann Stuppner
Research Paper


A fast and selective ultrahigh-performance liquid chromatography diode array detector (UHPLC-DAD) method combined with an off-line solid phase extraction (SPE) protocol was established to monitor destruxins (dtxs), a secondary metabolite class of highly bioactive cyclic depsipeptides. Sample purification via SPE was tailored to remove both more polar and apolar matrix constituents by applying analyte class-selective washing and elution conditions. To separate and detect destruxin congeners an UHPLC-DAD system hyphenated to a quadrupole–time-of-flight (Q-TOF) hybrid mass spectrometer was utilized. Analyses were performed on a sub-2-μm-particle-size RP-18 column with an acidified (0.02 % acetic acid) 12 min water/acetonitrile solvent gradient. In the dtx congener elution zone 22 chromatographic peaks were separated. Four of these were identified by comparison with reference materials as dtx A, dtx B, dtx E, and dtx E-diol; 16 were tentatively assigned as known or novel dtx congeners by the analysis of high resolution UHPLC-DAD-QTOF-MS/MS data recorded in the positive electrospray ionization (ESI) mode. The applicability of the UHPLC-DAD assay to investigate biological materials in a qualitative and quantitative manner was proven by the application of the platform to monitor the dtx production profile of three Metarhizium brunneum strain fungal culture broths.


Metarhizium Entomopathogenic fungus Destruxin Metabolites Risk assessment UHPLC-DAD-QTOF-MS/MS 



This research has been supported by the European Community’s Seventh Framework Programme grant (FP7_ENV.2011.3.1.9-1 ECO-INNOVATION, INBIOSOIL, Grant Agreement No. 282767).


  1. 1.
    Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530CrossRefGoogle Scholar
  2. 2.
    Kepler RM, Rehner SA (2013) Genome-assisted development of nuclear intergenic sequence markers for entomopathogenic fungi of the Metarhizium anisopliae species complex. Mol Ecol Resour 13:210–217CrossRefGoogle Scholar
  3. 3.
    Petzold-Maxwell JL, Jaronski ST, Clifton EH, Dunbar MW, Jackson MA, Gassmann AJ (2013) Interactions among Bt maize, entomopathogens, and rootworm species (Coleoptera: Chrysomelidae) in the field: effects on survival, yield, and root injury. J Econ Entomol 106:622–632CrossRefGoogle Scholar
  4. 4.
    Zimmermann G (2007) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Tech 17:879–920CrossRefGoogle Scholar
  5. 5.
    European Commission (2011) Commission implementing regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances, OJEU, L 153/1-186. Accessed 21 Apr 2014
  6. 6.
    Pedras MSC, Irina Zaharia L, Ward DE (2002) The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579–596CrossRefGoogle Scholar
  7. 7.
    Nakagawa H, Takami M, Udagawa N, Sawae Y, Suda K, Sasaki T, Takahashi N, Wachi M, Nagai K, Woo J (2003) Destruxins, cyclodepsipeptides, block the formation of actin rings and prominent clear zones and ruffled borders in osteoclasts. Bone 33:443–455CrossRefGoogle Scholar
  8. 8.
    Hinaje M, Ford M, Banting L, Arkle S, Khambay B (2002) An investigation of the ionophoric characteristics of destruxin A. Arch Biochem Biophys 405:73–77CrossRefGoogle Scholar
  9. 9.
    Tsunoo A, Kamijo M (1999) Non-cyclic AMP-dependent, positive inotropic cyclodepsipeptides with negative chronotropy. J Pharmacol Exp Ther 290:1006–1012Google Scholar
  10. 10.
    Dornetshuber-Fleiss R, Heffeter P, Mohr T, Hazemi P, Kryeziu K, Seger C, Berger W, Lemmens-Gruber R (2013) Destruxins: fungal-derived cyclohexadepsipeptides with multifaceted anticancer and antiangiogenic activities. Biochem Pharmacol 86:361–377CrossRefGoogle Scholar
  11. 11.
    Dumas C, Matha V, Quiot JM, Vey A (1996) Effects of destruxins, cyclic depsipeptide mycotoxins, on calcium balance and phosphorylation of intracellular proteins in lepidopteran cell lines. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 114:213–219CrossRefGoogle Scholar
  12. 12.
    Strauch O, Strasser H, Hauschild R, Ehlers RU (2011) Proposals for bacterial and fungal biocontrol agents. In: Ehlers RU (ed) Regulation of biological control agents. Spinger, DordrechtGoogle Scholar
  13. 13.
    Strasser H, Hutwimmer S, Burgstaller W (2011) Metabolite toxicology of fungal biocontrol agents: risks and risk assessment. In: Ehlers RU (ed) Regulation of biological control agents. Spinger, DordrechtGoogle Scholar
  14. 14.
    Seger C, Sturm S, Stuppner H, Butt TM, Strasser H (2004) Combination of a new sample preparation strategy with an accelerated high-performance liquid chromatography assay with photodiode array and mass spectrometric detection for the determination of destruxins from Metarhizium anisopliae culture broth. J Chromatogr A 1061:35–43CrossRefGoogle Scholar
  15. 15.
    Potterat O, Wagner K, Haag H (2000) Liquid chromatography-electrospray time-of-flight mass spectrometry for on-line accurate mass determination and identification of cyclodepsipeptides in a crude extract of the fungus Metarrhizium anisopliae. J Chromatogr A 872:85–90CrossRefGoogle Scholar
  16. 16.
    Seger C, Eberhart K, Sturm S, Strasser H, Stuppner H (2006) Apolar chromatography on Sephadex LH-20 combined with high-speed counter-current chromatography. J Chromatogr A 1117:67–73CrossRefGoogle Scholar
  17. 17.
    Jegorov A, Havlicek V, Sedmera P (1998) Rapid screening of destruxins by liquid chromatography/mass spectrometry. J Mass Spectrom 33:274–280CrossRefGoogle Scholar
  18. 18.
    ICH (2006) ICH harmonized tripartite guideline validation of analytical procedures: text and methodology Q2(R1). Accessed 21 Apr 2014
  19. 19.
    Skrobek A, Butt TM (2005) Toxicity testing of destruxins and crude extracts from the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 251:23–28CrossRefGoogle Scholar
  20. 20.
    Wang H, Hutwimmer S, Strasser H, Burgstaller W (2009) Destruxin production of Metarhizium anisopliae under carbon and nitrogen exhaustion. J Basic Microbiol 49:404–411CrossRefGoogle Scholar
  21. 21.
    Hutwimmer S, Wagner S, Affenzeller M, Burgstaller W, Strasser H (2008) Algorithm-based design of synthetic growth media stimulating virulence properties of Metarhizium anisopliae conidia. J Appl Microbiol 105:2026–2034CrossRefGoogle Scholar
  22. 22.
    Wang C, Skrobek A, Butt TM (2004) Investigations on the destruxin production of the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 85:168–174CrossRefGoogle Scholar
  23. 23.
    Loutelier C, Cherton JC, Lange C, Traris M, Vey A (1996) Studies on the dynamics of the production of destruxins by Metarhizium anisopliae: direct high-performance liquid chromatographic and fast atom bombardment mass spectrometric analysis correlated with biological activity tests. J Chromatogr A 738:181–189CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Judith Taibon
    • 1
    • 2
  • Sonja Sturm
    • 1
  • Christoph Seger
    • 1
    • 3
  • Martin Parth
    • 2
  • Hermann Strasser
    • 2
  • Hermann Stuppner
    • 1
  1. 1.Institute of Pharmacy, Department of Pharmacognosy, CCB–Centrum of Chemistry and BiomedicineUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute of MicrobiologyUniversity of InnsbruckInnsbruckAustria
  3. 3.Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL)University Hospital InnsbruckInnsbruckAustria

Personalised recommendations