Analytical and Bioanalytical Chemistry

, Volume 406, Issue 28, pp 7233–7242 | Cite as

Combined QCM-D/GE as a tool to characterize stimuli-responsive swelling of and protein adsorption on polymer brushes grafted onto 3D-nanostructures

  • Meike Koenig
  • Tadas Kasputis
  • Daniel Schmidt
  • Keith B. Rodenhausen
  • Klaus-Jochen Eichhorn
  • Angela K. Pannier
  • Mathias Schubert
  • Manfred Stamm
  • Petra Uhlmann
Research Paper

Abstract

A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N- isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties.

Keywords

Thin films Biomaterials Interface/surface analysis Nanostructures Polymer brushes Protein adsorption 

Notes

Acknowledgments

The authors acknowledge the financial support by the German Science Foundation (DFG) and the U.S. National Science Foundation (NSF) within the DFG-NSF “Materials World Network” under award numbers STA 324/49-1 and EI 317/6-1, and by NSF under award numbers EPS-1004094, CBET-1254415, and CMMI-1337856.

Supplementary material

216_2014_8154_MOESM1_ESM.pdf (452 kb)
(PDF 451 KB)

References

  1. 1.
    Cohen Stuart MA, Huck WT, Genzer J, Müller M, Christopher O, Stamm M, Sukhorukov G, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Nat Mater 9:101CrossRefGoogle Scholar
  2. 2.
    Azzaroni O (2012) J Polym Sci 50:3225CrossRefGoogle Scholar
  3. 3.
    Ayres N (2010) Polym Chem 1:769CrossRefGoogle Scholar
  4. 4.
    Chen T, Ferris R, Zhang H, Ducker R, Zauscher S (2010) Prog Polym Sci 35(94)Google Scholar
  5. 5.
    Brittain WJ, Minko S (2007) J Polym Sci Part A: Polym Chem 45:3505CrossRefGoogle Scholar
  6. 6.
    Stratakis E, Mateescu A, Barberoglou M, Vamvakaki M, Fotakis C, Anastasiadis H (2010) Chem. Commun 46:4136CrossRefGoogle Scholar
  7. 7.
    Liu X, Ye Q, Yu B, Liang Y, Liu W, Zhou F (2010) Langmuir 26:12377CrossRefGoogle Scholar
  8. 8.
    Ionov L, Stamm M, Diez S (2006) Nano Lett 6:1982CrossRefGoogle Scholar
  9. 9.
    Mi L, Bernards MT, Cheng G, Yu Q, Jiang S (2010) Biomaterials 31:2919CrossRefGoogle Scholar
  10. 10.
    Kumar S, Tong X, Dory YL, Lepage M, Zhao Y (2013) Chem Comm 49:90CrossRefGoogle Scholar
  11. 11.
    Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) J Am Chem Soc 131:2070CrossRefGoogle Scholar
  12. 12.
    Tam TK, Pita M, Motornov M, Tokarev I, Minko S, Katz E (2010) Adv Mater 22:1863CrossRefGoogle Scholar
  13. 13.
    Domack A, Prucker O, Rühe J, Johannsmann D (1997) Phys Rev E 56:680CrossRefGoogle Scholar
  14. 14.
    Bittrich E, Rodenhausen K, Eichhorn KJ, Hofmann T, Schubert M, Stamm M, Uhlmann P (2010) Biointerphases 5:159CrossRefGoogle Scholar
  15. 15.
    Koenig M, Rodenhausen K.B., Schmidt D, XEichhorn D, Schubert M, Stamm M, Uhlmann P (2013) Particle & Particle Syst Charac 30:931CrossRefGoogle Scholar
  16. 16.
    Robbie K, Brett MJ (1997) J Vac Sci Technol A 15:1460CrossRefGoogle Scholar
  17. 17.
    Seto MW, Dick B, Brett MJ (2001) J Micromech Microeng 11:582CrossRefGoogle Scholar
  18. 18.
    Zhao YP, Ye DX, Wang GC, Luc TM (2003) Nanotubes and nanowires. SPIE, BellinghamGoogle Scholar
  19. 19.
    Lakhtakia A, Messier R (2005) Sculptured thin films: nanoengineered morphology and optics. SPIE, BellinghamCrossRefGoogle Scholar
  20. 20.
    Hawkeye MM, Brett MJ, Vac J (2007) Sci Technol A 25:1317Google Scholar
  21. 21.
    Tsoi S, Fok E, Sit JC, Veinot JGC (2006) Chem Mater 18:5260CrossRefGoogle Scholar
  22. 22.
    Albrecht O, Zierold R, Patzig C, Bachmann J, Sturm C, Rheinländer B, Grundmann M, Görlitz D, Rauschenbach B, Nielsch K (2010) Phys Status Solidi B 247:1365CrossRefGoogle Scholar
  23. 23.
    Schmidt D, Schubert E, Schubert M, Appl Phys Lett (2012) 100:011912Google Scholar
  24. 24.
    Kasputis T, Koenig M, Schmidt D, Sekora D., Rodenhausen K, Eichhorn KJ, Uhlmann P, Schubert E, Pannier A, Schubert M, Stamm M (2013) J Phys Chem C 117:13971CrossRefGoogle Scholar
  25. 25.
    Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L (2013) Adv Mater 25:922CrossRefGoogle Scholar
  26. 26.
    Wilhelmina de Groot G, Demarche S, Santonicola MG, Tiefenauer L, Vancso GJ (2014) Nanoscale 6:2228CrossRefGoogle Scholar
  27. 27.
    Rodenhausen K, Schubert M (2011) Thin Solid Films 519:2772CrossRefGoogle Scholar
  28. 28.
    Schubert M (1996) Phys Rev B 53:4265CrossRefGoogle Scholar
  29. 29.
    Tompkins HG, Irene EA (2005) Handbook of ellipsometry. William Andrew Publishing, NorwichCrossRefGoogle Scholar
  30. 30.
    Fujiwara H (2007) Spectroscopic ellipsometry—principles and applications. Wiley, ChichesterCrossRefGoogle Scholar
  31. 31.
    Rodenhausen KB, Schmidt D, Kasputis T, Pannier A, Schubert E, Schubert MM (2012) Opt Express 20:5419CrossRefGoogle Scholar
  32. 32.
    Schmidt D, Schubert M (2013) vol 114, p 083510Google Scholar
  33. 33.
    Sauerbrey G (1959) Z Phys 155:206CrossRefGoogle Scholar
  34. 34.
    Kanazawa KK, Gordon JG (1985) Anal Chem 57:1770CrossRefGoogle Scholar
  35. 35.
    Schuhmacher R (1999) Chem Unserer Zeit 5:268CrossRefGoogle Scholar
  36. 36.
    Reviakine I, Johannsmann D, Richter R (2011) Anal Chem 83:8838CrossRefGoogle Scholar
  37. 37.
    Rodahl M, Höök F, Krozer A, Brzezinski P, Kasemo B (1995) Rev Sci Instrum 66:3924CrossRefGoogle Scholar
  38. 38.
    Voinova M, Jonson M, Kasemo B (1997) J Phys: Condens Matter 9:7799Google Scholar
  39. 39.
    Voinova M, Rodahl M, Jonson M, Kasemo B (1999) Physica Scripta 59:391CrossRefGoogle Scholar
  40. 40.
    Voinova M, Jonson M, Kasemo B (2002) Biosens Bioelectron 17:835CrossRefGoogle Scholar
  41. 41.
    Swaminatha Iyer K, Zdyrko B, Malz H, Pionteck J, Luzinov I Macromolecules 36:6519Google Scholar
  42. 42.
    Bae YH, Okano T, Kim SW (1990) J Polym Sci Pol Phys 28:923CrossRefGoogle Scholar
  43. 43.
    Schild HG, Tirrell DA (1990) J Phys Chem 94:4352CrossRefGoogle Scholar
  44. 44.
    Yim H, Kent S, Mendez S, Lopez GP, Satija S, Seo Y (2006) Macromolecules 39:3420CrossRefGoogle Scholar
  45. 45.
    Bittrich E, Burkert S, Müller M, Eichhorn KJ, Stamm M (2012) P. Uhlmann, Langmuir 28:3439CrossRefGoogle Scholar
  46. 46.
    Wang X, Qiu X, Wu C (1998) Macromolecules 31:2972CrossRefGoogle Scholar
  47. 47.
    Cheng H, Shen L, Wu C (2006) Macromolecules 39:2325CrossRefGoogle Scholar
  48. 48.
    Lu Y, Zhou K, Ding Y, Zhang G, Wu C (2010) Phys Chem Chem Phys 12:3188CrossRefGoogle Scholar
  49. 49.
    Norde W (2008) Biointerfaces Colloids and Surfaces B 61:1CrossRefGoogle Scholar
  50. 50.
    Vroman L (2009) Materials 2:1547CrossRefGoogle Scholar
  51. 51.
    Fenoglio I, Fubini B, Ghibaudi EM, Turci F (2011) Adv Drug Deliver Rev 63:1186CrossRefGoogle Scholar
  52. 52.
    Squire P, Moser P, O’Konski C (1968) Biochemistry 7:4261CrossRefGoogle Scholar
  53. 53.
    Soetewey F, Rosseneu-Motreff M, Lamote R, Peeters H (1972) J Biochem 71:705Google Scholar
  54. 54.
    Burkert S, Bittrich E, Kuntzsch M, Müller M, Eichhorn KJ, Bellmann C, Uhlmann P, Stamm M (2010) Langmuir 3:1786CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Meike Koenig
    • 1
    • 2
  • Tadas Kasputis
    • 3
    • 6
  • Daniel Schmidt
    • 4
    • 6
  • Keith B. Rodenhausen
    • 5
    • 6
  • Klaus-Jochen Eichhorn
    • 1
  • Angela K. Pannier
    • 3
    • 6
  • Mathias Schubert
    • 4
    • 6
    • 7
  • Manfred Stamm
    • 1
    • 2
  • Petra Uhlmann
    • 1
    • 4
  1. 1.Leibniz-Institut für Polymerforschung Dresden e.V.DresdenGermany
  2. 2.Department of Physical Chemistry of Polymer MaterialsTechnische Universität DresdenDresdenGermany
  3. 3.Department of Biological Systems EngineeringUniversity of Nebraska-LincolnLincolnUSA
  4. 4.Department of Electrical EngineeringUniversity of Nebraska-LincolnLincolnUSA
  5. 5.Department of Chemical and Biomolecular EngineeringUniversity of Nebraska-LincolnLincolnUSA
  6. 6.Center for Nanohybrid Functional MaterialsUniversity of Nebraska-LincolnLincolnUSA
  7. 7.Nebraska Center for Materials and NanoscienceUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations