Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 29, pp 7611–7621 | Cite as

Identification and characterization of a phage display-derived peptide for orthopoxvirus detection

  • Lilija Miller
  • Janine Michel
  • Guido Vogt
  • Jörg Döllinger
  • Daniel Stern
  • Janett Piesker
  • Andreas NitscheEmail author
Research Paper

Abstract

Fast and reliable diagnostic assays are required for a resilient detection of clinical infections or biothreat-relevant pathogens. While PCR has proven to be the gold standard for nucleic acid detection, the identification of pathogen particles is still challenging and depends on the availability of well-characterized, chemically stable, and selective recognition molecules. Here, we report the screening of a phage display random peptide library for vaccinia virus-binding peptides. The identified peptide was extensively characterized using peptide-probe ELISA, surface plasmon resonance, nLC-MS/MS, Western Blot, peptide-based immunofluorescence assay, and electron microscopy. Following identification, the phage-free, synthetic peptide, designated αVACVpep05, was shown to bind to vaccinia virus and other orthopoxviruses. We can demonstrate that the highly conserved orthopoxvirus surface protein D8 is the interaction partner of αVACVpep05, thus enabling the peptide to bind to other orthopoxviruses, including cowpox virus and monkeypox virus, viruses that cause clinically relevant zoonotic infections in humans. The process of phage display-mediated peptide identification has been optimized intensively, and we provide recommendations for the identification of peptides suitable for the detection of further pathogens. The peptide described here was critically characterized and seems to be a promising reagent for the development of diagnostic platforms for orthopoxviruses. We believe that our results will help to promote the development of alternative, nonantibody-based synthetic detection molecules for further pathogens.

Keywords

Phage display Synthetic peptide Pathogen detection Vaccinia virus Orthopoxviruses 

Notes

Acknowledgments

The authors are grateful to P. Wojciech Dabrowski for programming the “Library Insert Finder” software and to Andreas Kurth for providing us with adenovirus. We also thank Ursula Erikli for copy-editing. This work was funded within the BMBF/VDI-financed BiGRUDI network of the Robert Koch Institute (Berlin).

Conflict of interest

The authors declare no conflict of interests.

Supplementary material

216_2014_8150_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1080 kb)

References

  1. 1.
    Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18(4):583–607. doi: 10.1128/CMR.18.4.583-607.2005 CrossRefGoogle Scholar
  2. 2.
    Kodadek T, Reddy MM, Olivos HJ, Bachhawat-Sikder K, Alluri PG (2004) Synthetic molecules as antibody replacements. Acc Chem Res 37(9):711–718. doi: 10.1021/ar030145l CrossRefGoogle Scholar
  3. 3.
    Ngundi MM, Kulagina NV, Anderson GP, Taitt CR (2006) Nonantibody-based recognition: alternative molecules for detection of pathogens. Expert Rev Proteomics 3(5):511–524. doi: 10.1586/14789450.3.5.511 CrossRefGoogle Scholar
  4. 4.
    Petrenko V (2003) Phage display for detection of biological threat agents. J Microbiol Methods 53(2):253–262. doi: 10.1016/s0167-7012(03)00029-0 CrossRefGoogle Scholar
  5. 5.
    Willats WGT (2002) Phage display: practicalities and prospects. Plant Mol Biol 50:837–854CrossRefGoogle Scholar
  6. 6.
    Szardenings M (2003) Phage display of random peptide libraries: applications, limits, and potential. J Recept Signal Transduct Res 23(4):307–349. doi: 10.1081/RRS-120026973 CrossRefGoogle Scholar
  7. 7.
    Wang X, Li G, Ren Y, Ren X (2011) Phages bearing affinity peptides to bovine rotavirus differentiate the virus from other viruses. PLoS ONE 6(12):e28667. doi: 10.1371/journal.pone.0028667 CrossRefGoogle Scholar
  8. 8.
    Wang C, Sun X, Suo S, Ren Y, Li X, Herrler G, Thiel V, Ren X (2013) Phages bearing affinity peptides to severe acute respiratory syndromes-associated coronavirus differentiate this virus from other viruses. J Clin Virol. doi: 10.1016/j.jcv.2013.04.002 Google Scholar
  9. 9.
    Rogers JD, Ajami NJ, Fryszczyn BG, Estes MK, Atmar RL, Palzkill T (2013) Identification and characterization of a Peptide affinity reagent for detection of noroviruses in clinical samples. J Clin Microbiol 51(6):1803–1808. doi: 10.1128/JCM.00295-13 CrossRefGoogle Scholar
  10. 10.
    Lavilla M, De Luis R, Perez MD, Calvo M, Sanchez L (2009) Selection of high affine peptide ligands for detection of Clostridium Tyrobutyricum spores. J Microbiol Methods 79(2):214–219. doi: 10.1016/j.mimet.2009.09.008 CrossRefGoogle Scholar
  11. 11.
    Rao SS, Mohan KV, Gao Y, Atreya CD (2013) Identification and evaluation of a novel peptide binding to the cell surface of Staphylococcus aureus. J Microbiol Res 168(2):106–112. doi: 10.1016/j.micres.2012.07.004 CrossRefGoogle Scholar
  12. 12.
    Morton J, Karoonuthaisiri N, Stewart LD, Oplatowska M, Elliott CT, Grant IR (2013) Production and evaluation of the utility of novel phage display-derived peptide ligands to Salmonella spp. for magnetic separation. J Appl Microbiol 115(1):271–281. doi: 10.1111/jam.12207 CrossRefGoogle Scholar
  13. 13.
    Alibek K (2004) Smallpox: a disease and a weapon. Int J Infect Dis 8(Suppl 2):S3–8. doi: 10.1016/j.ijid.2004.09.004 CrossRefGoogle Scholar
  14. 14.
    Essbauer S, Pfeffer M, Meyer H (2010) Zoonotic poxviruses. Vet Microbio 140(3–4):229–236. doi: 10.1016/j.vetmic.2009.08.026 CrossRefGoogle Scholar
  15. 15.
    Sonntag M, Muhldorfer K, Speck S, Wibbelt G, Kurth A (2009) New adenovirus in bats, Germany. Emerg Infect Dis 15(12):2052–2055. doi: 10.3201/eid1512.090646 CrossRefGoogle Scholar
  16. 16.
    Kurth A, Wibbelt G, Gerber HP, Petschaelis A, Pauli G, Nitsche A (2008) Rat-to-elephant-to-human transmission of cowpox virus. Emerg Infect Dis 14(4):670–671. doi: 10.3201/eid1404.070817 CrossRefGoogle Scholar
  17. 17.
    Isaacs SN (2004) Vaccinia virus and poxvirology : methods and protocols. Methods Mol Biol, vol 269. Humana, Totowa, NJGoogle Scholar
  18. 18.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860CrossRefGoogle Scholar
  19. 19.
    Rich RL, Quinn JG, Morton T, Stepp JD, Myszka DG (2010) Biosensor-based fragment screening using FastStep injections. Anal Biochem 407(2):270–277. doi: 10.1016/j.ab.2010.08.024 CrossRefGoogle Scholar
  20. 20.
    Laue M (2010) Electron microscopy of viruses. Methods Cell Biol 96:1–20. doi: 10.1016/S0091-679X(10)96001-9 CrossRefGoogle Scholar
  21. 21.
    Chang TH, Chang SJ, Hsieh FL, Ko TP, Lin CT, Ho MR, Wang I, Hsu ST, Guo RT, Chang W, Wang AH (2013) Crystal structure of vaccinia viral A27 protein reveals a novel structure critical for its function and complex formation with A26 protein. PLoS Pathog 9(8):e1003563. doi: 10.1371/journal.ppat.1003563 CrossRefGoogle Scholar
  22. 22.
    Su HP, Singh K, Gittis AG, Garboczi DN (2010) The structure of the poxvirus A33 protein reveals a dimer of unique C-type lectin-like domains. J Virol 84(5):2502–2510. doi: 10.1128/JVI.02247-09 CrossRefGoogle Scholar
  23. 23.
    Perdiguero B, Blasco R (2006) Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. J Virol 80(17):8763–8777. doi: 10.1128/JVI.00598-06 CrossRefGoogle Scholar
  24. 24.
    Matho MH, Maybeno M, Benhnia MR, Becker D, Meng X, Xiang Y, Crotty S, Peters B, Zajonc DM (2012) Structural and biochemical characterization of the vaccinia virus envelope protein D8 and its recognition by the antibody LA5. J Virol 86(15):8050–8058. doi: 10.1128/JVI.00836-12 CrossRefGoogle Scholar
  25. 25.
    Brown E, Senkevich TG, Moss B (2006) Vaccinia virus F9 virion membrane protein is required for entry but not virus assembly, in contrast to the related L1 protein. J Virol 80(19):9455–9464. doi: 10.1128/JVI.01149-06 CrossRefGoogle Scholar
  26. 26.
    Van Vliet K, Mohamed MR, Zhang L, Villa NY, Werden SJ, Liu J, McFadden G (2009) Poxvirus proteomics and virus-host protein interactions. Microbio Mol Biol Rev : MMBR 73(4):730–749. doi: 10.1128/MMBR.00026-09 CrossRefGoogle Scholar
  27. 27.
    Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97(2):391–410CrossRefGoogle Scholar
  28. 28.
    Hsiao JC, Chung CS, Chang W (1999) Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 73(10):8750–8761Google Scholar
  29. 29.
    Choi SK (2004) Synthetic multivalent molecules: concepts and biomedical applications. Wiley, Hoboken, NJCrossRefGoogle Scholar
  30. 30.
    Marik J, Lam KS (2005) Peptide and small-molecule microarrays. Methods Mol Biol 310:217–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lilija Miller
    • 1
    • 2
  • Janine Michel
    • 1
  • Guido Vogt
    • 1
  • Jörg Döllinger
    • 1
  • Daniel Stern
    • 1
  • Janett Piesker
    • 1
  • Andreas Nitsche
    • 1
    Email author
  1. 1.Centre for Biological Threats and Special PathogensHighly Pathogenic Viruses, Robert Koch-InstitutBerlinGermany
  2. 2.Junior Research Group 2, Novel Vaccination Strategies and Early Immune ResponsesPaul-Ehrlich-InstitutLangenGermany

Personalised recommendations