Analytical and Bioanalytical Chemistry

, Volume 407, Issue 1, pp 59–78 | Cite as

Critical review of the determination of photoluminescence quantum yields of luminescent reporters

  • C. Würth
  • D. Geißler
  • T. Behnke
  • M. Kaiser
  • U. Resch-Genger
Review

Abstract

A crucial variable for methodical performance evaluation and comparison of luminescent reporters is the photoluminescence quantum yield (Φpl). This quantity, defined as the number of emitted photons per number of absorbed photons, is the direct measure of the efficiency of the conversion of absorbed photons into emitted light for small organic dyes, fluorescent proteins, metal–ligand complexes, metal clusters, polymeric nanoparticles, and semiconductor and up-conversion nanocrystals. Φpl determines the sensitivity for the detection of a specific analyte from the chromophore perspective, together with its molar-absorption coefficient at the excitation wavelength. In this review we discuss different optical and photothermal methods for measuring Φpl of transparent and scattering systems for the most common classes of luminescent reporters, and critically evaluate their potential and limitations. In addition, reporter-specific effects and sources of uncertainty are addressed. The ultimate objective is to provide users of fluorescence techniques with validated tools for the determination of Φpl, including a series of Φpl standards for the ultraviolet, visible, and near-infrared regions, and to enable better judgment of the reliability of literature data.

Graphical Abstract

Keywords

Fluorescence Photoluminescence Quantum yield Organic dye Nanoparticle Quantum dot Up-conversion nanocrystal Optical probe Standard Quality assurance Integrating sphere spectroscopy Photoacoustic spectroscopy Thermal lensing Nanocavity 

References

  1. 1.
    Mason WT (1999) Fluorescent and luminescent probes for biological activity. Biological Techniques Series, 2nd edn. Academic Press, LondonGoogle Scholar
  2. 2.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Principles of fluorescence spectroscopy, 3rd edn. Springer Science+Business Media, LLC, New YorkGoogle Scholar
  3. 3.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589Google Scholar
  4. 4.
    Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640Google Scholar
  5. 5.
    Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684Google Scholar
  6. 6.
    Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3(3):142–155Google Scholar
  7. 7.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775Google Scholar
  8. 8.
    Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45(28):4562–4588Google Scholar
  9. 9.
    Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461Google Scholar
  10. 10.
    Demchenko AP (2005) Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 343:1–22Google Scholar
  11. 11.
    de Silva AP, Gunaratne HQN, Gunnlaugson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors. Chem Rev 97:1515–1566Google Scholar
  12. 12.
    Rurack K, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling - the 'magic triangle' for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31(2):116–127Google Scholar
  13. 13.
    Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83Google Scholar
  14. 14.
    Waggoner A (2006) Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol 10(1):62–66Google Scholar
  15. 15.
    Schaferling M, Nagl S (2006) Optical technologies for the read out and quality control of DNA and protein microarrays. Anal Bioanal Chem 385(3):500–517Google Scholar
  16. 16.
    Haughland RP (1995) Coupling of monoclonal antibodies with fluorophores, vol 45. Methods in Molecular Biology. Humana Press, TotowaGoogle Scholar
  17. 17.
    Resch-Genger U, Licha K (2011) Probes for optical imaging: new developments. Drug Discovery Today 8(2–4):e87–e94Google Scholar
  18. 18.
    Tung CH, Bredow S, Mahmood U, Weissleder R (1999) Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjugate Chem 10(5):892–896Google Scholar
  19. 19.
    Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44(2):83–90Google Scholar
  20. 20.
    Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39(8):3102–3114Google Scholar
  21. 21.
    Packard BZ, Komoriya A (2008) Intracellular protease activation in apoptosis and cellmediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates. Cell Res 18(2):238–247Google Scholar
  22. 22.
    Chen R, Parry JJ, Akers WJ, Berezin MY, El Naqa IM, Achilefu S, Edwards WB, Rogers BE (2010) Multimodality imaging of gene transfer with a receptor-based reporter gene. J Nucl Med 51(9):1456–1463Google Scholar
  23. 23.
    Guo K, Berezin MY, Zheng J, Akers W, Lin F, Teng B, Vasalatiy O, Gandjbakhche A, Griffiths GL, Achilefu S (2010) Near infrared-fluorescent and magnetic resonance imaging molecular probe with high T-1 relaxivity for in vivo multimodal imaging. Chem Commun 46(21):3705–3707Google Scholar
  24. 24.
    Berezin MY, Guo K, Teng B, Edwards WB, Anderson CJ, Vasalatiy O, Gandjbakhche A, Griffiths GL, Achilefu S (2009) Radioactivity-synchronized fluorescence enhancement using a radionuclide fluorescence-quenched dye. J Am Chem Soc 131((26):9198Google Scholar
  25. 25.
    Hodenius M, Würth C, Jayapaul J, Wong JE, Lammers T, Gätjens J, Arns S, Mertens N, Slabu I, Ivanova G, Bornemann J, Cuyper MD, Resch-Genger U, Kiessling F (2012) Fluorescent magnetoliposomes as a platform technology for functional and molecular MR and optical imaging. Contrast Media Mol Imaging 7(1):59–67Google Scholar
  26. 26.
    Panchuk-Voloshina N, Haughland RP, Bishop-Stewart J, Bhalgal MK, Millard PJ, Mao F, Leung W-Y, Haughland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188Google Scholar
  27. 27.
    Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung C-Y, Chang W, Hirsch JD, Beechem JM, Haughland RP, Haughland RP (2003) Quantitative comparison of long-wavelength Alexa Fluo dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51:1699–1712Google Scholar
  28. 28.
    Cox WG, Beaudet MP, Agnew JY, Ruth JL (2004) Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal Biochem 331:243–254Google Scholar
  29. 29.
    Ferreira LFV, Freixo MR, Garcia AR, Wilkinson F (1992) Photochemistry on surfaces: fluorescence emission quantum yield evaluation of dyes adsorbed on microcrystalline cellulose. J Chem Soc-Faraday Trans 88(1):15–22Google Scholar
  30. 30.
    Braslavsky SE (2007) Glossary of terms used in photochemistry 3(rd) Edition (IUPAC Recommendations 2006). Pure Appl Chem 79(3):293–465Google Scholar
  31. 31.
    Strickler SJ, Berg RA (1962) Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J Chem Phys 37(4):814–822Google Scholar
  32. 32.
    Rurack K (2008) Fluorescence Quantum Yields-Methods of Determination and Standards. In: Resch-Genger U (ed) Standardization and Quality Assurance in Fluorescence Measurements I: Techniques, vol 5. Springer Series on Fluorescence. Springer, Berlin-HeidelbergGoogle Scholar
  33. 33.
    Würth C, Gonzalez MG, Niessner R, Panne U, Haisch C, Genger UR (2012) Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods - providing the basis for fluorescence quantum yield standards. Talanta 90(0):30–37Google Scholar
  34. 34.
    Bindhu CV, Harilal SS (2001) Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique. Anal Sci 17(1):141–144Google Scholar
  35. 35.
    Resch-Genger U, Hoffmann K, Nietfeld W, Engel A, Neukammer J, Nitschke R, Ebert B, Macdonald R (2005) How to improve quality assurance in fluorometry: fluorescence-inherent sources of error and suited fluorescence standards. J Fluoresc 15(3):337–362Google Scholar
  36. 36.
    Demas JN, Crosby GA (1971) The measurement of photoluminescence quantum yields. A review. J Phys Chem 75(8):991–1024Google Scholar
  37. 37.
    Demas JN (1982) Measurement of photon yields, vol 3. Optical Radiation Measurements, Vol. 3 Measurement of Photoluminescence. Academic Press, New YorkGoogle Scholar
  38. 38.
    Parker CA, Rees WT (1960) Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst (Cambridge, U K) 85:587–600Google Scholar
  39. 39.
    Velapoldi RA, Tonnesen HH (2004) Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J Fluoresc 14(4):465–472Google Scholar
  40. 40.
    Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81(15):6285–6294Google Scholar
  41. 41.
    Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem Photobiol 75(4):327–334Google Scholar
  42. 42.
    Galanin MD, Kufénko AA, Smorchkov VN, Timofee YP, Chizhikov ZA (1982) Measurement of photoluminescence quantum yield of dye solutions by the Vavilov and integrating-sphere methods. Opt Spektrosk (USSR) 53(4):683–689Google Scholar
  43. 43.
    Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, Oishi S, Tobita S (2009) Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys Chem Chem Phys 11(42):9850–9860Google Scholar
  44. 44.
    Porrès L, Holland A, Pålsson L-O, Monkman AP, Kemp C, Beeby A (2006) Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J Fluoresc 16(2):267–273Google Scholar
  45. 45.
    de Mello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9(3):230–232Google Scholar
  46. 46.
    Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC (2010) Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots. J Phys Chem Lett 1(16):2445–2450Google Scholar
  47. 47.
    Martini M, Montagna M, Ou M, Tillement O, Roux S, Perriat P (2009) How to measure quantum yields in scattering media: Application to the quantum yield measurement of fluorescein molecules encapsulated in sub-100 nm silica particles. J Appl Phys 106(9):094304, 094309 pagesGoogle Scholar
  48. 48.
    Würth C, Pauli J, Lochmann C, Spieles M, Resch-Genger U (2012) Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal Chem 84(3):1345–1352Google Scholar
  49. 49.
    Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2011) Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Anal Chem 83:3431–3439Google Scholar
  50. 50.
    Boyer JC, van Veggel F (2010) Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2(8):1417–1419Google Scholar
  51. 51.
    Xu SH, Wang CL, Xu QY, Li RQ, Shao HB, Zhang HS, Fang M, Lei W, Cui YP (2010) What is a convincing photoluminescence quantum yield of fluorescent nanocrystals. J Phys Chem C 114(34):14319–14326Google Scholar
  52. 52.
    Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260–1264Google Scholar
  53. 53.
    Resch-Genger U, deRose P (2010) Fluorescence standards: classification, terminology, and recommendations on their selection, use, and production (IUPAC Technical Report). Pure Appl Chem 82(12):2315–2335Google Scholar
  54. 54.
    Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem 83(12):2213–2228Google Scholar
  55. 55.
    Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8(8):1535–1550Google Scholar
  56. 56.
    DeRose PC, Resch-Genger U (2010) Recommendations for Fluorescence Instrument Qualification: The New ASTM Standard Guide. Anal Chem 82(5):2129–2133Google Scholar
  57. 57.
    Resch-Genger U, Bremser W, Pfeifer D, Spieles M, Hoffmann A, DeRose PC, Zwinkels JC, Fo G, Ebert B, Taubert RD, Monte C, Voigt J, Hollandt J, Macdonald R (2012) State-of-the Art Comparability of Corrected Emission Spectra.1. Spectral Correction with Physical Transfer Standards and Spectral Fluorescence Standards by Expert Laboratories. Anal Chem 84(9):3889–3898Google Scholar
  58. 58.
    Resch-Genger U, Hoffmann K, Pfeifer D (2009) Simple Instrument Calibration and Validation Standards for Fluorescence Techniques. In: Geddes CD (ed) Reviews in Fluorescence vol 4. Reviews in Fluorescence Springer Science Businesss Media, Inc, New York, pp 1–32Google Scholar
  59. 59.
    Resch-Genger U, Pfeifer D, Monte C, Pilz W, Hoffmann A, Spieles M, Rurack K, Hollandt J, Taubert D, Schonenberger B, Nording P (2005) Traceability in fluorometry: Part II. Spectral fluorescence standards. J Fluoresc 15(3):315–336Google Scholar
  60. 60.
    Mielenz KD (1978) Refraction correction for fluorescence spectra of aqueous solutions. Appl Opt 17(18):2875–2876Google Scholar
  61. 61.
    Würth C, Lochmann C, Spieles M, Pauli J, Hoffmann K, Schuttrigkeit T, Franzl T, Resch-Genger U (2010) Evaluation of a Commercial Integrating Sphere Setup for the Determination of Absolute Photoluminescence Quantum Yields of Dilute Dye Solutions. Appl Spectrosc 64(7):733–741Google Scholar
  62. 62.
    Chang TWF, Maria A, Cyr PW, Sukhovatkin V, Levina L, Sargent EH (2005) High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films. Synth Met 148(3):257–261Google Scholar
  63. 63.
    Rohwer LS, Martin JE (2005) Measuring the absolute quantum efficiency of luminescent materials. J Lumin 115(3–4):77–90Google Scholar
  64. 64.
    Johnson AR, Lee SJ, Klein J, Kanicki J (2007) Absolute photoluminescence quantum efficiency measurement of light-emitting thin films. Rev Sci Instrum 78(9)Google Scholar
  65. 65.
    Ahn TS, Al-Kaysi RO, Mueller AM, Wentz KM, Bardeen CJ (2007) Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements. Rev Sci Instrum 78(8):086105Google Scholar
  66. 66.
    Olmsted J (1979) Calorimetric determinations of absolute fluorescence quantum yields. J Phys Chem 83(20):2581–2584Google Scholar
  67. 67.
    Mardelli M, Olmsted J (1977) Calorimetric determination of the 9,10-diphenyl-anthracene fluorescence quantum yield. J Photochem 7(4):277–285Google Scholar
  68. 68.
    Magde D, Brannon JH, Cremers TL, Olmsted J (1979) Absolute luminescence yield of cresyl violet.A standard for the red. J Phys Chem 83(6):696–699Google Scholar
  69. 69.
    Haisch C (2012) Photoacoustic spectroscopy for analytical measurements. Measurement Science & Technology 23 (1)Google Scholar
  70. 70.
    Falvey DE (1997) Photothermal beam deflection calorimetry in solution photochemistry: Recent progress and future prospects. Photochem Photobiol 65(1):4–9Google Scholar
  71. 71.
    Brannon JH, Magde D (1978) Absolute quantum yield determination by thermal blooming - fluorescein. J Phys Chem 82(6):705–709Google Scholar
  72. 72.
    Estupinan-Lopez C, Dominguez CT, de Araujo RE (2013) Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement. Opt Express 21(15):18592–18601Google Scholar
  73. 73.
    Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260(1–2):115–118Google Scholar
  74. 74.
    Fischer M, Georges J (1997) Use of thermal lens spectrometry for the investigation of dimerization equilibria of rhodamine 6G in water and aqueous micellar solutions. Spectrochim Acta Part A-Mol Biomol Spectrosc 53(9):1419–1430Google Scholar
  75. 75.
    Kumar BR, Basheer NS, Kurian A, George SD (2013) Thermal-Lens Study on the Distance-Dependent Energy Transfer from Rhodamine 6G to Gold Nanoparticles. Int J Thermophys 34(10):1982–1992Google Scholar
  76. 76.
    Chizhik AI, Gregor I, Ernst B, Enderlein J (2013) Nanocavity-Based Determination of Absolute Values of Photoluminescence Quantum Yields. ChemPhysChem 14(3):505–513Google Scholar
  77. 77.
    Chizhik AI, Gregor I, Schleifenbaum F, Muller CB, Roling C, Meixner AJ, Enderlein J (2012) Electrodynamic Coupling of Electric Dipole Emitters to a Fluctuating Mode Density within a Nanocavity. Phys Rev Lett 108(16):163002Google Scholar
  78. 78.
    Lunnemann P, Rabouw FT, van Dijk-Moes RJA, Pietra F, Vanmaekelbergh D, Koenderink AF (2013) Calibrating and Controlling the Quantum Efficiency Distribution of Inhomogeneously Broadened Quantum Rods by Using a Mirror Ball. ACS Nano 7(7):5984–5992Google Scholar
  79. 79.
    Buchler BC, Kalkbrenner T, Hettich C, Sandoghdar V (2005) Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys Rev Lett 95(6)063003Google Scholar
  80. 80.
    Trabesinger W, Kramer A, Kreiter M, Hecht B, Wild UP (2002) Single-molecule near-field optical energy transfer microscopy. Appl Phys Lett 81(11):2118–2120Google Scholar
  81. 81.
    Leistikow MD, Johansen J, Kettelarij AJ, Lodahl P, Vos WL (2009) Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states. Phys Rev B 79(4)045301Google Scholar
  82. 82.
    Cesa Y, Blum C, van den Broek JM, Mosk AP, Vos WL, Subramaniam V (2009) Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates. Phys Chem Chem Phys 11(14):2525–2531Google Scholar
  83. 83.
    Kwadrin A, Koenderink AF (2012) Gray-Tone Lithography Implementation of Drexhage's Method for Calibrating Radiative and Nonradiative Decay Constants of Fluorophores. J Phys Chem C 116(31):16666–16673Google Scholar
  84. 84.
    Chizhik AI, Chizhik AM, Khoptyar D, Bar S, Meixner AJ, Enderlein J (2011) Probing the Radiative Transition of Single Molecules with a Tunable Microresonator. Nano Lett 11(4):1700–1703Google Scholar
  85. 85.
    Bar S, Chizhik A, Gutbrod R, Schleifenbaum F, Chizhik A, Meixner AJ (2010) Microcavities: tailoring the optical properties of single quantum emitters. Anal Bioanal Chem 396(1):3–14Google Scholar
  86. 86.
    Pauli J, Grabolle M, Brehm R, Spieles M, Hamann FM, Wenzel M, Hilger I, Resch-Genger U (2011) Suitable Labels for Molecular Imaging - Influence of Dye Structure and Hydrophilicity on the Spectroscopic Properties of IgG Conjugates. Bioconjugate Chem 22(7):1298–1308Google Scholar
  87. 87.
    Durisic N, Godin AG, Walters D, Grutter P, Wiseman PW, Heyes CD (2011) Probing the "Dark" Fraction of Core-Shell Quantum Dots by Ensemble and Single Particle pH-Dependent Spectroscopy. ACS Nano 5(11):9062–9073Google Scholar
  88. 88.
    Chizhik AI, Gregor I, Enderlein J (2013) Quantum Yield Measurement in a Multicolor Chromophore Solution Using a Nanocavity. Nano Lett 13(3):1348–1351Google Scholar
  89. 89.
    Karedla N, Enderlein J, Gregor I, Chizhik AI (2014) Absolute Photoluminescence Quantum Yield Measurement in a Complex Nanoscopic System with Multiple Overlapping States. J Phys Chem Lett 5(7):1198–1202Google Scholar
  90. 90.
    Munro AM, Ginger DS (2008) Photoluminescence quenching of single CdSe nanocrystals by ligand adsorption. Nano Lett 8(8):2585–2590Google Scholar
  91. 91.
    Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chem Rev 113(3):1904–2074Google Scholar
  92. 92.
    Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal Chem 83(12):4453–4488Google Scholar
  93. 93.
    Leubner S, Hatami S, Esendemir N, Lorenz T, Joswig JO, Lesnyak V, Recknagel S, Gaponik N, Resch-Genger U, Eychmüller A (2013) Experimental and theoretical investigations of the ligand structure of water-soluble CdTe nanocrystals. Dalton Trans 42(35):12733–12740Google Scholar
  94. 94.
    Laux EM, Behnke T, Hoffmann K, Resch-Genger U (2012) Keeping particles brilliant – simple methods for the determination of the dye content of fluorophore-loaded polymeric particles. Anal Methods 6:1759–1768Google Scholar
  95. 95.
    Velapoldi RA, Mielenz KD (1980) A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate. NBS Spec Publ 260–64:1–115Google Scholar
  96. 96.
    Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462Google Scholar
  97. 97.
    Kawski A, Kuklinski B, Bojarski P (2009) Photophysical properties and thermochromic shifts of electronic spectra of Nile Red in selected solvents. Excited states dipole moments. Chem Phys 359(1–3):58–64Google Scholar
  98. 98.
    Cser A, Nagy K, Biczok L (2002) Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment. Chem Phys Lett 360(5–6):473–478Google Scholar
  99. 99.
    Benson RC, Kues HA (1977) Absorption and Fluorescence Properties of Cyanine Dyes. J Chem Eng Data 22:379–383Google Scholar
  100. 100.
    Soper SA, Mattingly QL (1994) Steady -State and Picosecond Laser Fluorescence Studies of Nonradiative Pathways in Tricarbocyanine Dyes: Implications to the Design of Near-IR Fluorochromes with High Fluorescence Efficiencies. J Am Chem Soc 116:3744–3752Google Scholar
  101. 101.
    Zhegalova NG, He S, Zhou H, Kim DM, Berezin MY (2014) Minimization of self-quenching fluorescence on dyes conjugated to biomolecules with multiple labeling sites via asymmetrically charged NIR fluorophores. Contrast Media & Molecular Imaging:n/a-n/aGoogle Scholar
  102. 102.
    Hines MA, Scholes GD (2003) Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15(21):1844–1849Google Scholar
  103. 103.
    Du H, Chen CL, Krishnan R, Krauss TD, Harbold JM, Wise FW, Thomas MG, Silcox J (2002) Optical properties of colloidal PbSe nanocrystals. Nano Lett 2(11):1321–1324Google Scholar
  104. 104.
    Soper SA, Nutter HL, Keller RA, Davis LM, Shera EB (1993) The Photophysical Constants of Several Fluorescent Dyes Pertaining to Ultrasensitive Fluorescence Spectroscopy. Photochem Photobiol 57(6):972–977Google Scholar
  105. 105.
    Desmettre T, Devoisselle JM, Mordon S (2000) Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 45(1):15–27Google Scholar
  106. 106.
    Reindl S, Penzkofer A, Gong SH, Landthaler M, Szeimies RM, Abels C, Baumler W (1997) Quantum yield of triplet formation for indocyanine green. J Photochem Photobiol A-Chem 105(1):65–68Google Scholar
  107. 107.
    Kopainsky B, Qiu P, Kaiser W, Sens B, Drexhage KH (1982) Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm. Appl Phys B-Photophys Laser Chem 29(1):15–18Google Scholar
  108. 108.
    Murphy JE, Beard MC, Norman AG, Ahrenkiel SP, Johnson JC, Yu PR, Micic OI, Ellingson RJ, Nozik AJ (2006) PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J Am Chem Soc 128(10):3241–3247Google Scholar
  109. 109.
    Wehrenberg BL, Wang CJ, Guyot-Sionnest P (2002) Interband and intraband optical studies of PbSe colloidal quantum dots. J Phys Chem B 106(41):10634–10640Google Scholar
  110. 110.
    Eisfeld A, Briggs JS (2006) The J- and H-bands of organic dye aggregates. Chem Phys 324(2–3):376–384Google Scholar
  111. 111.
    Resch-Genger U, Rurack K (2013) Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical Report). Pure Appl Chem 85(10):2005–2026Google Scholar
  112. 112.
    Richardson FS (1982) Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82(5):541–552Google Scholar
  113. 113.
    Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048–1077Google Scholar
  114. 114.
    Bünzli J-CG (2010) Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem Rev 110(5):2729–2755Google Scholar
  115. 115.
    Selvin PR (2002) Principles and Biophysical Applications of Lanthanide-Based Probes. Annu Rev Biophys Biomol Struct 31(1):275–302Google Scholar
  116. 116.
    Hemmilä I, Laitala V (2005) Progress in Lanthanides as Luminescent Probes. J Fluoresc 15(4):529–542Google Scholar
  117. 117.
    Geißler D, Charbonnière LJ, Ziessel RF, Butlin NG, Löhmannsröben H-G, Hildebrandt N (2010) Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics. Angew Chem Int Ed 49(8):1396–1401Google Scholar
  118. 118.
    Geißler D, Stufler S, Löhmannsröben H-G, Hildebrandt N (2013) Six-Color Time-Resolved Forster Resonance Energy Transfer for Ultrasensitive Multiplexed Biosensing. J Am Chem Soc 135(3):1102–1109Google Scholar
  119. 119.
    Binnemans K (2009) Lanthanide-Based Luminescent Hybrid Materials. Chem Rev 109(9):4283–4374Google Scholar
  120. 120.
    Geißler D, Hildebrandt N (2011) Lanthanide Complexes in FRET Applications. Curr Inorg Chem 1(1):17–35Google Scholar
  121. 121.
    Ofelt GS (1962) Intensities of Crystal Spectra of Rare-Earth Ions. J Chem Phys 37(3):511–520Google Scholar
  122. 122.
    Judd BR (1962) Optical Absorption Intensities of Rare-Earth Ions. Phys Rev 127(3):750–761Google Scholar
  123. 123.
    Aebischer A, Gumy F, Bunzli JCG (2009) Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates). Phys Chem Chem Phys 11(9):1346–1353Google Scholar
  124. 124.
    Werts MHV, Jukes RTF, Verhoeven JW (2002) The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys Chem Chem Phys 4(9):1542–1548Google Scholar
  125. 125.
    Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Anal Chem 83(23):8826–8837Google Scholar
  126. 126.
    Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai HJ (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4(11):773–780Google Scholar
  127. 127.
    Wang GL, Huang T, Murray RW, Menard L, Nuzzo RG (2005) Near-IR luminescence of monolayer-protected metal clusters. J Am Chem Soc 127(3):812–813Google Scholar
  128. 128.
    Kershaw SV, Susha AS, Rogach AL (2013) Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem Soc Rev 42(7):3033–3087Google Scholar
  129. 129.
    Qu LH, Peng XG (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124(9):2049–2055Google Scholar
  130. 130.
    Zhao X-S, Xu S-Y, Liang L-Y, Li T, Cauchi S (2007) Luminescent stability of water-soluble PbS nanoparticles. J Mater Sci 42(12):4265–4269Google Scholar
  131. 131.
    Xie RG, Kolb U, Li JX, Basche T, Mews A (2005) Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127(20):7480–7488Google Scholar
  132. 132.
    Ziegler J, Merkulov A, Grabolle M, Resch-Genger U, Nann T (2007) High-Quality ZnS Shells for CdSe Nanoparticles: Rapid Microwave Synthesis. Langmuir 23(14):7751–7759Google Scholar
  133. 133.
    Pietryga JM, Werder DJ, Williams DJ, Casson JL, Schaller RD, Klimov VI, Hollingsworth JA (2008) Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J Am Chem Soc 130(14):4879–4885Google Scholar
  134. 134.
    Cruz RA, Pilla V, Catunda T (2010) Quantum yield excitation spectrum (UV-visible) of CdSe/ZnS core-shell quantum dots by thermal lens spectrometry. J Appl Phys 107(8)Google Scholar
  135. 135.
    Tonti D, van Mourik F, Chergui M (2004) On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots. Nano Lett 4(12):2483–2487Google Scholar
  136. 136.
    Ebenstein Y, Mokari T, Banin U (2002) Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl Phys Lett 80(21):4033–4035Google Scholar
  137. 137.
    Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proc Natl Acad Sci U S A 102(40):14284–14289Google Scholar
  138. 138.
    Brokmann X, Coolen L, Dahan M, Hermier JP (2004) Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys Rev Lett 93(10)Google Scholar
  139. 139.
    Hohng S, Ha T (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 126(5):1324–1325Google Scholar
  140. 140.
    Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20:2454–2469Google Scholar
  141. 141.
    Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle'' architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042Google Scholar
  142. 142.
    Yan JL, Estevez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2(3):44–50Google Scholar
  143. 143.
    Chan CPY, Bruemmel Y, Seydack M, Sin KK, Wong LW, Merisko-Liversidge E, Trau D, Renneberg R (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76(13):3638–3645Google Scholar
  144. 144.
    Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15(27–28):2657–2669Google Scholar
  145. 145.
    Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71(21):4831–4836Google Scholar
  146. 146.
    Lee YEK, Smith R, Kopelman R (2009) Nanoparticle PEBBLE Sensors in Live Cells and In Vivo. Annu Rev Anal Chem 2:57–76Google Scholar
  147. 147.
    Coto-Garcia AM, Sotelo-Gonzalez E, Fernandez-Arguelles M, Pereiro R, Costa-Fernandez JM, Sanz-Medel A (2011) Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal Bioanal Chem 399(1):29–42Google Scholar
  148. 148.
    Kobayashi H, Longmire MR, Ogawa M, Choyke PL, Kawamoto S (2010) Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol 11(6):589–595Google Scholar
  149. 149.
    Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC (2009) New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy. Adv Funct Mater 19(10):1553–1566Google Scholar
  150. 150.
    Orringer DA, Koo YE, Chen T, Kopelman R, Sagher O, Philbert MA (2009) Small Solutions for Big Problems: The Application of Nanoparticles to Brain Tumor Diagnosis and Therapy. Clin Pharmacol Ther (St Louis, MO, U S) 85(5):531–534Google Scholar
  151. 151.
    Behnke T, Mathejczyk JE, Brehm R, Würth C, Gomes FR, Dullin C, Napp J, Alves F, Resch-Genger U (2013) Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials 34(1):160–170Google Scholar
  152. 152.
    Behnke T, Würth C, Laux E-M, Hoffmann K, Resch-Genger U (2012) Simple strategies towards bright polymer particles via one-step staining procedures. Dyes Pigm 94(2):247–257Google Scholar
  153. 153.
    Huber A, Behnke T, Wurth C, Jaeger C, Resch-Genger U (2012) Spectroscopic characterization of coumarin-stained beads: quantification of the number of fluorophores per particle with solid-state 19F-NMR and measurement of absolute fluorescence quantum yields. Anal Chem 84(8):3654–3661Google Scholar
  154. 154.
    Napp J, Behnke T, Fischer L, Würth C, Wottawa M, Katschinski DM, Alves F, Resch-Genger U, Schäferling M (2011) Targeted Luminescent Near-Infrared Polymer-Nanoprobes for In Vivo Imaging of Tumor Hypoxia. Anal Chem 83(23):9039–9046Google Scholar
  155. 155.
    Hennig A, Borcherding H, Jaeger C, Hatami S, Würth C, Hoffmann A, Hoffmann K, Thiele T, Schedler U, Resch-Genger U (2012) Scope and Limitations of Surface Functional Group Quantification Methods: Exploratory Study with Poly(acrylic acid)-Grafted Micro- and Nanoparticles. J Am Chem Soc 134(19):8268–8276Google Scholar
  156. 156.
    Hennig A, Hoffmann A, Borcherding H, Thiele T, Schedler U, Resch-Genger U (2011) Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles. Anal Chem 83(12):4970–4974Google Scholar
  157. 157.
    Natte K, Behnke T, Orts-Gil G, Würth C, Friedrich JF, Osterle W, Resch-Genger U (2012) Synthesis and characterisation of highly fluorescent core-shell nanoparticles based on Alexa dyes. J Nanopart Res 14(2):680Google Scholar
  158. 158.
    Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH (2008) Encapsulation of Organic Molecules in Calcium Phosphate Nanocomposite Particles for Intracellular Imaging and Drug Delivery. Nano Lett 8(12):4108–4115Google Scholar
  159. 159.
    Felbeck T, Behnke T, Hoffmann K, Grabolle M, Lezhnina MM, Kynast UH, Resch-Genger U (2013) Nile-Red-Nanoclay Hybrids: Red Emissive Optical Probes for Use in Aqueous Dispersion. Langmuir 29(36):11489–11497Google Scholar
  160. 160.
    Nolan JP, Mandy F (2006) Multiplexed and microparticle-based analyses: Quantitative tools for the large-scale analysis of biological systems. Cytom Part A 69A(5):318–325Google Scholar
  161. 161.
    Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR (1997) Advanced multiplexed analysis with the FlowMetrix System. Clin Chem 43(9):1749–1756Google Scholar
  162. 162.
    Beske O, Guo JJ, Li JR, Bassoni D, Bland K, Marciniak H, Zarowitz M, Temov V, Ravkin I, Goldbard S (2004) A novel encoded particle technology that enables simultaneous interrogation of multiple cell types. J Biomol Screen 9(3):173–185Google Scholar
  163. 163.
    Ugozzoli LA (2004) Multiplex assays with fluorescent microbead readout: A powerful tool for mutation detection.lf. Clin Chem 50(11):1963–1965Google Scholar
  164. 164.
    Eastman PS, Ruan W, Doctolero M, Nuttall R, de Freo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6(5):1059–1064Google Scholar
  165. 165.
    Riegger L, Grumann M, Nann T, Riegler J, Ehlert O, Bessler W, Mittenbuehler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducree J (2006) Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sensors Actuators A-Phys 126(2):455–462Google Scholar
  166. 166.
    Shepard JRE (2006) Polychromatic microarrays: Simultaneous multicolor array hybridization of eight samples. Anal Chem 78(8):3589–3597Google Scholar
  167. 167.
    Ferguson JA, Steemers FJ, Walt DR (2000) High-Density Fiber-Optic DNA Random Microsphere Array. Anal Chem 72:5618–5624Google Scholar
  168. 168.
    Evans M, Sewter C, Hill E (2003) An encoded particle array tool for multiplex bioassays. Assay Drug Dev Technol 1(1):199–207Google Scholar
  169. 169.
    Zl Z, Morita Y, Hasan Q, Tamiya E (2003) Micromachining Microcarrier-Based Biomolecular Encoding for Miniaturized and Multiplexed Immunoassay. Anal Chem 75(16):4125–4131Google Scholar
  170. 170.
    McDonagh C, Stranik O, Nooney R, MacCraith BD (2009) Nanoparticle strategies for enhancing the sensitivity of fluorescence-based biochips. Nanomedicine 4(6):645–656Google Scholar
  171. 171.
    Russin JT, Altinoglu EI, Adair JH, Eklund PC (2010). Journal of Physics: Condensed Matter 22Google Scholar
  172. 172.
    Bringley JF, Penner TL, Wang RZ, Harder JF, Harrison WJ, Buonemani L (2008) Silica nanoparticles encapsulating near-infrared emissive cyanine dyes. J Colloid Interface Sci 320(1):132–139Google Scholar
  173. 173.
    Herz E, Marchincin T, Connelly L, Bonner D, Burns A, Switalski S, Wiesner U (2010) Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles. J Fluoresc 20(1):67–72Google Scholar
  174. 174.
    Sari SMC, Debouttiere PJ, Lamartine R, Vocanson F, Dujardin C, Ledoux G, Roux S, Tillement O, Perriat P (2004) Grafting of colloidal stable gold nanoparticles with lissamine rhodamine B: an original procedure for counting the number of dye molecules attached to the particles. J Mater Chem 14(3):402–407Google Scholar
  175. 175.
    Haase M, Schafer H (2011) Upconverting Nanoparticles. Angew Chem Int Ed 50(26):5808–5829Google Scholar
  176. 176.
    Xu CT, Zhan QQ, Liu HC, Somesfalean G, Qian J, He SL, Andersson-Engels S (2013) Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev 7(5):663–697Google Scholar
  177. 177.
    Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–173Google Scholar
  178. 178.
    MacDougall SKW, Ivaturi A, Marques-Hueso J, Richards BS (2014) Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: Correcting for absorption/re-emission. Rev Sci Instrum 85(6):063109Google Scholar
  179. 179.
    Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li ZP, Song J, Pandey RK, Agren H, Prasad PN, Han G (2012) (alpha-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 6(9):8280–8287Google Scholar
  180. 180.
    Chen GY, Ohulchanskyy TY, Kachynski A, Agren H, Prasad PN (2011) Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm. ACS Nano 5(6):4981–4986Google Scholar
  181. 181.
    Birks JB (1970) Photophysics of Aromatic Molecules. Wiley Interscience, LondonGoogle Scholar
  182. 182.
    Schäferling M (2012) The Art of Fluorescence Imaging with Chemical Sensors. Angew Chem Int Ed 51:2–25Google Scholar
  183. 183.
    Nijegorodov N, Vasilenko V, Monowe P, Masale M (2009) Systematic investigation of the influence of methyl groups upon fluorescence parameters and the intersystem crossing rate constant of aromatic molecules. Spectrochim Acta Part A-Mol Biomol Spectrosc 74(1):188–194Google Scholar
  184. 184.
    Hurtubise RJ, Thompson AL, Hubbard SE (2005) Solid-phase room-temperature phosphorescence. Anal Lett 38(12):1823–1845Google Scholar
  185. 185.
    Gilmore EH, Gibson GE, McClure DS (1952) Absolute Quantum Efficiencies of Luminescence of Organic Molecules in Solid Solution. J Chem Phys 20(5):829–836Google Scholar
  186. 186.
    Nijegorodov N, Mabbs R (2000) The dependence of the fluorescence properties, laser properties and photochemical stability of aromatic compounds on the molecular symmetry. Spectrochim Acta Part A-Mol Biomol Spectrosc 56(11):2157–2166Google Scholar
  187. 187.
    Eaton DF (1988) Reference Materials for Fluorescence Measurements. Pure Appl Chem 60(7):1107–1114Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Würth
    • 1
  • D. Geißler
    • 1
  • T. Behnke
    • 1
  • M. Kaiser
    • 1
  • U. Resch-Genger
    • 1
  1. 1.BAM - Federal Institute for Materials Research and Testing, Division 1.10 BiophotonicsBerlinGermany

Personalised recommendations