Advertisement

Analytical and Bioanalytical Chemistry

, Volume 407, Issue 3, pp 669–680 | Cite as

Mass-spectrometry-based microbial metabolomics: recent developments and applications

  • Peng Gao
  • Guowang Xu
Review
Part of the following topical collections:
  1. ABCs 13th Anniversary

Abstract

Metabolomics is an omics technique aiming at qualitatively and quantitatively describing a metabolome by various analytical platforms. It is an indispensable component of modern systems biology. Microbial metabolomics can be roughly classified as metabolic footprint analysis and metabolic fingerprint analysis depending on the analyte origins. Both of them have been beneficial to microbiological research for different reasons. Mass spectrometry and nuclear magnetic resonance spectroscopy techniques are popular analytical strategies prevailing in the metabolomics field. In this review, chromatography–mass-spectrometry-based microbial metabolomic analysis steps are summarized, including sample collection, metabolite extraction, instrument analysis, and data analysis. Moreover, their applications in some representative fields are discussed as examples. The aim of this review is to present briefly recent technical advances in mass-spectrometry-based analysis, and to highlight the value of modern applications of microbial metabolomics.

Graphical Abstract

Keywords

Metabolomics Gas chromatography–mass spectrometry Liquid chromatography–mass spectrometry Capillary electrophoresis–mass spectrometry Microbial metabolomics 

Notes

Acknowledgments

The study was supported by the National Basic Research Program (2007CB707800) of the State Ministry of Science and Technology of China, the Knowledge Innovation Program of the Chinese Academy of Sciences, the Foundation (no. 21175132), the Creative Research Group Project (no. 21321064), and the Surface Project (81372695) from the National Natural Science Foundation of China.

References

  1. 1.
    van der Greef J, Hankemeier T, McBurney RN (2006) Metabolomics-based systems biology and personalized medicine: moving towards n = 1 clinical trials? Pharmacogenomics 7(7):1087–1094CrossRefGoogle Scholar
  2. 2.
    Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689CrossRefGoogle Scholar
  3. 3.
    van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T (2007) Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370(1):17–25CrossRefGoogle Scholar
  4. 4.
    van der Werf MJ, Jellema RH, Hankemeier T (2005) Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets. J Ind Microbiol Biotechnol 32(6):234–252CrossRefGoogle Scholar
  5. 5.
    Jewison T, Knox C, Neveu V, Djoumbou Y, Guo AC, Lee J, Liu P, Mandal R, Krishnamurthy R, Sinelnikov I, Wilson M, Wishart DS (2012) YMDB: the Yeast Metabolome Database. Nucleic Acids Res 40(5):D815–D820CrossRefGoogle Scholar
  6. 6.
    Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58(1):1–26CrossRefGoogle Scholar
  7. 7.
    Carneiro S, Villas-Boas SG, Ferreira EC, Rocha I (2011) Metabolic footprint analysis of recombinant Escherichia coli strains during fed-batch fermentations. Mol Biosyst 7(3):899–910Google Scholar
  8. 8.
    Sue T, Obolonkin V, Griffiths H, Villas-Boas SG (2011) An exometabolomics approach to monitoring microbial contamination in microalgal fermentation processes by using metabolic footprint analysis. Appl Environ Microbiol 77(21):7605–7610CrossRefGoogle Scholar
  9. 9.
    Pope GA, MacKenzie DA, Defernez M, Aroso MA, Fuller LJ, Mellon FA, Dunn WB, Brown M, Goodacre R, Kell DB, Marvin ME, Louis EJ, Roberts IN (2007) Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24(8):667–679CrossRefGoogle Scholar
  10. 10.
    Orriss IR, Knight GE, Utting JC, Taylor SE, Burnstock G, Arnett TR (2009) Hypoxia stimulates vesicular ATP release from rat osteoblasts. J Cell Physiol 220(1):155–162CrossRefGoogle Scholar
  11. 11.
    Mortensen SP, Thaning P, Nyberg M, Saltin B, Hellsten Y (2011) Local release of ATP into the arterial inflow and venous drainage of human skeletal muscle: insight from ATP determination with the intravascular microdialysis technique. J Physiol 589(7):1847–1857CrossRefGoogle Scholar
  12. 12.
    Hiller J, Franco-Lara E, Papaioannou V, Weuster-Botz D (2007) Fast sampling and quenching procedures for microbial metabolic profiling. Biotechnol Lett 29(8):1161–1167CrossRefGoogle Scholar
  13. 13.
    Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13(14):1347–1355CrossRefGoogle Scholar
  14. 14.
    Wang X, Xie Y, Gao P, Zhang S, Tan H, Yang F, Lian R, Tian J, Xu G (2014) A metabolomics-based method for studying the effect of yfcC gene in Escherichia coli on metabolism. Anal Biochem 451:48–55CrossRefGoogle Scholar
  15. 15.
    Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Metabolomics: quantification of intracellular metabolite dynamics. Biomol Eng 19(1):5–15CrossRefGoogle Scholar
  16. 16.
    Tian J, Sang P, Gao P, Fu R, Yang D, Zhang L, Zhou J, Wu S, Lu X, Li Y, Xu G (2009) Optimization of a GC-MS metabolic fingerprint method and its application in characterizing engineered bacterial metabolic shift. J Sep Sci 32(13):2281–2288CrossRefGoogle Scholar
  17. 17.
    Winder CL, Dunn WB, Schuler S, Broadhurst D, Jarvis R, Stephens GM, Goodacre R (2008) Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Anal Chem 80(8):2939–2948CrossRefGoogle Scholar
  18. 18.
    Sasidharan K, Soga T, Tomita M, Murray DB (2012) A yeast metabolite extraction protocol optimised for time-series analyses. PLoS ONE 7(8):e44283CrossRefGoogle Scholar
  19. 19.
    Wellerdiek M, Winterhoff D, Reule W, Brandner J, Oldiges M (2009) Metabolic quenching of Corynebacterium glutamicum: efficiency of methods and impact of cold shock. Bioprocess Biosyst Eng 32(5):581–592CrossRefGoogle Scholar
  20. 20.
    Villas-Bôas SG, Bruheim P (2007) Cold glycerol-saline: the promising quenching solution for accurate intracellular metabolite analysis of microbial cells. Anal Biochem 370(1):87–97CrossRefGoogle Scholar
  21. 21.
    Faijes M, Mars AE, Smid EJ (2007) Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum. Microb Cell Fact 6:27CrossRefGoogle Scholar
  22. 22.
    Lee SH, Kim S, Kwon MA, Jung YH, Shin YA, Kim KH (2014) Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum. Biotechnol Bioeng. doi: 10.1002/bit.25314 Google Scholar
  23. 23.
    Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH (2013) Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal Chem 85(4):2169–2176CrossRefGoogle Scholar
  24. 24.
    Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22(5):1434–1442CrossRefGoogle Scholar
  25. 25.
    Schaefer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270(1):88–96CrossRefGoogle Scholar
  26. 26.
    van Gulik WM (2010) Fast sampling for quantitative microbial metabolomics. Curr Opin Biotechnol 21(1):27–34CrossRefGoogle Scholar
  27. 27.
    Buziol S, Bashir I, Baumeister A, Claassen W, Noisommit-Rizzi N, Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped-flow sampling technique for measurements of metabolite dynamics on a subsecond time scale. Biotechnol Bioeng 80(6):632–636CrossRefGoogle Scholar
  28. 28.
    Brauer MJ, Yuan J, Bennett BD, Lu W, Kimball E, Botstein D, Rabinowitz JD (2006) Conservation of the metabolomic response to starvation across two divergent microbes. Proc Natl Acad Sci U S A 103(51):19302–19307CrossRefGoogle Scholar
  29. 29.
    Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79(10):3843–3849CrossRefGoogle Scholar
  30. 30.
    Fei F, Bowdish DM, McCarry BE (2014) Comprehensive and simultaneous coverage of lipid and polar metabolites for endogenous cellular metabolomics using HILIC-TOF-MS. Anal Bioanal Chem 406(15):3723–3733CrossRefGoogle Scholar
  31. 31.
    Bean HD, Dimandja JM, Hill JE (2012) Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr B 901:41–46CrossRefGoogle Scholar
  32. 32.
    Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T (2006) Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78(4):1272–1281CrossRefGoogle Scholar
  33. 33.
    Hossain SM, Bojko B, Pawliszyn J (2013) Automated SPME-GC-MS monitoring of headspace metabolomic responses of E. coli to biologically active components extracted by the coating. Anal Chim Acta 776:41–49CrossRefGoogle Scholar
  34. 34.
    Koo I, Shi X, Kim S, Zhang X (2014) iMatch2: Compound identification using retention index for analysis of gas chromatography-mass spectrometry data. J Chromatogr A 1337:202–210CrossRefGoogle Scholar
  35. 35.
    Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, Stein SE (2007) Development of a database of gas chromatographic retention properties of organic compounds. J Chromatogr A 1157(1–2):414–421CrossRefGoogle Scholar
  36. 36.
    Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81(24):10038–10048CrossRefGoogle Scholar
  37. 37.
    Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442CrossRefGoogle Scholar
  38. 38.
    Purcaro G, Tranchida PQ, Dugo P, La CE, Bisignano G, Conte L, Mondello L (2010) Characterization of bacterial lipid profiles by using rapid sample preparation and fast comprehensive two-dimensional gas chromatography in combination with mass spectrometry. J Sep Sci 33(15):2334–2340CrossRefGoogle Scholar
  39. 39.
    Kiefer P, Delmotte N, Vorholt JA (2011) Nanoscale ion-pair reversed-phase HPLC-MS for sensitive metabolome analysis. Anal Chem 83(3):850–855CrossRefGoogle Scholar
  40. 40.
    Farag MA, Gad HA, Heiss AG, Wessjohann LA (2014) Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem 151:333–342CrossRefGoogle Scholar
  41. 41.
    Zhou B, Xiao JF, Tuli L, Ressom HW (2012) LC-MS-based metabolomics. Mol Biosyst 8(2):470–481CrossRefGoogle Scholar
  42. 42.
    Li Q, Lynen F, Wang J, Li H, Xu G, Sandra P (2012) Comprehensive hydrophilic interaction and ion-pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides. J Chromatogr A 1255:237–243CrossRefGoogle Scholar
  43. 43.
    Wang Y, Wang J, Yao M, Zhao X, Fritsche J, Schmitt-Kopplin P, Cai Z, Wan D, Lu X, Yang S, Gu J, Haring HU, Schleicher ED, Lehmann R, Xu G (2008) Metabonomics study on the effects of the ginsenoside Rg3 in a beta-cyclodextrin-based formulation on tumor-bearing rats by a fully automatic hydrophilic interaction/reversed-phase column-switching HPLC-ESI-MS approach. Anal Chem 80(12):4680–4688CrossRefGoogle Scholar
  44. 44.
    Yuan M, Breitkopf SB, Yang X, Asara JM (2012) A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7(5):872–881CrossRefGoogle Scholar
  45. 45.
    Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka T (2002) Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem 74(10):2233–2239CrossRefGoogle Scholar
  46. 46.
    Itoh A, Ohashi Y, Soga T, Mori H, Nishioka T, Tomita M (2004) Application of capillary electrophoresis-mass spectrometry to synthetic in vitro glycolysis studies. Electrophoresis 25(13):1996–2002CrossRefGoogle Scholar
  47. 47.
    Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T (2003) Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res 2(5):488–494CrossRefGoogle Scholar
  48. 48.
    Ramautar R, Somsen GW, de Jong GJ (2009) CE-MS in metabolomics. Electrophoresis 30(1):276–291CrossRefGoogle Scholar
  49. 49.
    Soga T, Ueno Y, Naraoka H, Matsuda K, Tomita M, Nishioka T (2002) Pressure-assisted capillary electrophoresis electrospray ionization mass spectrometry for analysis of multivalent anions. Anal Chem 74(24):6224–6229CrossRefGoogle Scholar
  50. 50.
    Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann HP, Tomita M (2009) Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Anal Chem 81(15):6165–6174CrossRefGoogle Scholar
  51. 51.
    Monton MR, Soga T (2007) Metabolome analysis by capillary electrophoresis-mass spectrometry. J Chromatogr A 1168(1–2):237–246CrossRefGoogle Scholar
  52. 52.
    Sugimoto M, Kikuchi S, Arita M, Soga T, Nishioka T, Tomita M (2005) Large-scale prediction of cationic metabolite identity and migration time in capillary electrophoresis mass spectrometry using artificial neural networks. Anal Chem 77(1):78–84CrossRefGoogle Scholar
  53. 53.
    Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG (2003) An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry 62(6):929–937CrossRefGoogle Scholar
  54. 54.
    Hsu CC, ElNaggar MS, Peng Y, Fang J, Sanchez LM, Mascuch SJ, Moller KA, Alazzeh EK, Pikula J, Quinn RA, Zeng Y, Wolfe BE, Dutton RJ, Gerwick L, Zhang L, Liu X, Mansson M, Dorrestein PC (2013) Real-time metabolomics on living microorganisms using ambient electrospray ionization flow-probe. Anal Chem 85(15):7014–7018CrossRefGoogle Scholar
  55. 55.
    Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, Angeletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E, McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aebersold R (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat Biotechnol 22(11):1459–1466CrossRefGoogle Scholar
  56. 56.
    Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158(1–2):318–328CrossRefGoogle Scholar
  57. 57.
    Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, van Ommen B, Smilde AK (2006) Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal Chem 78(2):567–574CrossRefGoogle Scholar
  58. 58.
    Steuer R, Morgenthal K, Weckwerth W, Selbig J (2007) A gentle guide to the analysis of metabolomic data. Methods Mol Biol 358:105–126CrossRefGoogle Scholar
  59. 59.
    Gromski PS, Xu Y, Kotze HL, Correa E, Ellis DI, Armitage EG, Turner ML, Goodacre R (2014) Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites 4(2):433–452CrossRefGoogle Scholar
  60. 60.
    Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787CrossRefGoogle Scholar
  61. 61.
    Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22(5):634–636CrossRefGoogle Scholar
  62. 62.
    Xia J, Mandal R, Sinelnikov IV, Broadhurst D, Wishart DS (2012) MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res 40(W1):W127–W133CrossRefGoogle Scholar
  63. 63.
    Sysi-Aho M, Katajamaa M, Yetukuri L, Oresic M (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinform 8:93CrossRefGoogle Scholar
  64. 64.
    Probert CS, Jones PR, Ratcliffe NM (2004) A novel method for rapidly diagnosing the causes of diarrhoea. Gut 53(1):58–61CrossRefGoogle Scholar
  65. 65.
    Schmerler D, Neugebauer S, Ludewig K, Bremer-Streck S, Brunkhorst FM, Kiehntopf M (2012) Targeted metabolomics for discrimination of systemic inflammatory disorders in critically ill patients. J Lipid Res 53(7):1369–1375CrossRefGoogle Scholar
  66. 66.
    Schmidt FR (2004) The challenge of multidrug resistance: actual strategies in the development of novel antibacterials. Appl Microbiol Biotechnol 63(4):335–343CrossRefGoogle Scholar
  67. 67.
    Allen J, Davey HM, Broadhurst D, Rowland JJ, Oliver SG, Kell DB (2004) Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Appl Environ Microbiol 70(10):6157–6165CrossRefGoogle Scholar
  68. 68.
    Yu Y, Yi ZB, Liang YZ (2007) Main antimicrobial components of Tinospora capillipes, and their mode of action against Staphylococcus aureus. FEBS Lett 581(22):4179–4183CrossRefGoogle Scholar
  69. 69.
    Gombert AK, dos Moreira SM, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183(4):1441–1451CrossRefGoogle Scholar
  70. 70.
    Raamsdonk LM, Teusink B, Broadhurst D, Zhang N, Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19(1):45–50CrossRefGoogle Scholar
  71. 71.
    Saito N, Robert M, Kitamura S, Baran R, Soga T, Mori H, Nishioka T, Tomita M (2006) Metabolomics approach for enzyme discovery. J Proteome Res 5(8):1979–1987CrossRefGoogle Scholar
  72. 72.
    Xia M, Huang D, Li S, Wen J, Jia X, Chen Y (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110(10):2717–2730CrossRefGoogle Scholar
  73. 73.
    Ma Q, Zhou J, Zhang W, Meng X, Sun J, Yuan YJ (2011) Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS ONE 6(10):e26108CrossRefGoogle Scholar
  74. 74.
    Zha Y, Westerhuis JA, Muilwijk B, Overkamp KM, Nijmeijer BM, Coulier L, Smilde AK, Punt PJ (2014) Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach. BMC Biotechnol 14:22. doi: 10.1186/1472-6750-14-22 CrossRefGoogle Scholar
  75. 75.
    Viegelmann C, Margassery LM, Kennedy J, Zhang T, O'Brien C, O'Gara F, Morrissey JP, Dobson AD, Edrada-Ebel R (2014) Metabolomic profiling and genomic study of a marine sponge-associated Streptomyces sp. Mar Drugs 12(6):3323–3351CrossRefGoogle Scholar
  76. 76.
    Cortina NS, Krug D, Plaza A, Revermann O, Muller R (2012) Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed 51(3):811–816CrossRefGoogle Scholar
  77. 77.
    Loh KD, Gyaneshwar P, Markenscoff PE, Fong R, Kim KS, Parales R, Zhou Z, Inwood W, Kustu S (2006) A previously undescribed pathway for pyrimidine catabolism. Proc Natl Acad Sci U S A 103(13):5114–5119CrossRefGoogle Scholar
  78. 78.
    Guo C, Huang XY, Yang MJ, Wang S, Ren ST, Li H, Peng XX (2014) GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish Shellfish Immunol 39(2):215–222CrossRefGoogle Scholar
  79. 79.
    van Duynhoven J, van der Hooft JJ, van Dorsten FA, Peters S, Foltz M, Gomez-Roldan V, Vervoort J, de Vos RC, Jacobs DM (2014) Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. J Proteome Res 13(5):2668–2678CrossRefGoogle Scholar
  80. 80.
    Settachaimongkon S, Nout MJ, Antunes Fernandes EC, Hettinga KA, Vervoort JM, van Hooijdonk TC, Zwietering MH, Smid EJ, van Valenberg HJ (2014) Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int J Food Microbiol 177:29–36CrossRefGoogle Scholar
  81. 81.
    Liebeke M, Meyer H, Donat S, Ohlsen K, Lalk M (2010) A metabolomic view of Staphylococcus aureus and its Ser/Thr kinase and phosphatase deletion mutants: involvement in cell wall biosynthesis. Chem Biol 17(8):820–830CrossRefGoogle Scholar
  82. 82.
    Eoh H, Rhee KY (2014) Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci U S A 111(13):4976–4981CrossRefGoogle Scholar
  83. 83.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57–63CrossRefGoogle Scholar
  84. 84.
    Zhu H, Ren X, Wang J, Song Z, Shi M, Qiao J, Tian X, Liu J, Chen L, Zhang W (2013) Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 6(1):106CrossRefGoogle Scholar
  85. 85.
    Yang C, Hua Q, Baba T, Mori H, Shimizu K (2003) Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol Bioeng 84(2):129–144CrossRefGoogle Scholar
  86. 86.
    Mas S, Villas-Boas SG, Hansen ME, Akesson M, Nielsen J (2007) A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants. Biotechnol Bioeng 96(5):1014–1022CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations