Analytical and Bioanalytical Chemistry

, Volume 407, Issue 3, pp 869–882 | Cite as

Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures

Research Paper
Part of the following topical collections:
  1. ABCs 13th Anniversary

Abstract

Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders (92Mo, 94Mo, 95Mo, 96Mo, 97Mo, 98Mo, and 100Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: 92Mo/95Mo = 0.9235(9), 94Mo/95Mo = 0.5785(8), 96Mo/95Mo = 1.0503(9), 97Mo/95Mo = 0.6033(6), 98Mo/95Mo = 1.5291(20), and 100Mo/95Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51 %), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the 95Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio measurements. However, data obtained in this study show that instrumental mass discrimination in MC-ICP-MS is consistent with mass-dependent Mo isotope fractionation. This was demonstrated by a good agreement between experimentally obtained and theoretically expected values of the exponent of isotope fractionation, β, for each triad of Mo isotopes.

Graphical abstract

Mo isotope amount ratio measurementsᅟ

Keywords

Mo isotope ratios Calibration Measurement traceability Instrumental mass discrimination 

Notes

Acknowledgments

The work was supported by funding from the UK National Measurement Office and EURAMET within the project SIB09 Elements. The authors are grateful to Mike Sargent for encouragement and useful discussions in the project. Jennifer O’Reilly is acknowledged for careful internal review of the manuscript.

References

  1. 1.
    De Laeter JR, Böhlke JK, De Bièvre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Pure Appl Chem 75:683–800CrossRefGoogle Scholar
  2. 2.
    Greber ND, Hofmann BA, Voegelin AR, Villa IM, Nägler TF (2011) Geochim Cosmochim Acta 75:6600–6609CrossRefGoogle Scholar
  3. 3.
    Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Science 304:87–90CrossRefGoogle Scholar
  4. 4.
    Anbar AD, Rouxel O (2007) Ann Rev Earth Planet Sci 35:717–746CrossRefGoogle Scholar
  5. 5.
    Neubert N, Nägler TF, Böttcher ME (2008) Geology 36:775–778CrossRefGoogle Scholar
  6. 6.
    Goldberg T, Gordon G, Izon G, Archer C, Pearce C, McManus J, Anbar A, Rehkämper M (2013) J Anal Atom Spectrom 28:724–735CrossRefGoogle Scholar
  7. 7.
    Greber N, Siebert C, Nägler TF, Pettke T (2012) Geostand Geoanalyt Res 36:291–300CrossRefGoogle Scholar
  8. 8.
    Nägler TF, Anbar AD, Archer C, Goldberg T, Gordon G, Greber ND, Siebert C, Sohrin Y, Vance D (2014) Geostand Geoanalyt Res 38:149–151Google Scholar
  9. 9.
    Mayer A, Wieser M (2014) J Anal Atom Spectrom 29:85–94CrossRefGoogle Scholar
  10. 10.
    De Bièvre P, Dybkaer R, Fajgelj A, Hibbert DB (2011) Pure Appl Chem 83:1873–1935CrossRefGoogle Scholar
  11. 11.
    Malinovsky D, Vanhaecke F (2011) Anal Bioanal Chem 400:1619–1624CrossRefGoogle Scholar
  12. 12.
    Buchachenko A (2013) J Phys Chem B 117:2231–2238CrossRefGoogle Scholar
  13. 13.
    Moynier F, Fujii T, Brennecka GA, Nielsen SG (2013) C R Geosci 345:150–159CrossRefGoogle Scholar
  14. 14.
    Newman K, Freedman P, Williams J, Belshaw N, Halliday A (2009) J Anal At Spectrom 24:742–751CrossRefGoogle Scholar
  15. 15.
    Yang L, Mester Z, Zhou L, Gao S, Sturgeon RE, Meija J (2011) Anal Chem 83:8999–9004CrossRefGoogle Scholar
  16. 16.
    Burkhardt C, Kleine T, Oberli F, Pack A, Bourdon B, Wieler R (2011) Earth Planet Sci Lett 312:390–400CrossRefGoogle Scholar
  17. 17.
    Fujii T, Moynier F, Telouk P, Albarède F (2006) Astrophys J 647:1506–1516CrossRefGoogle Scholar
  18. 18.
    Fujii T, Moynier F, Albarède F (2009) Chem Geol 267:139–156CrossRefGoogle Scholar
  19. 19.
    Meija J (2012) Anal Bioanal Chem 403:2071–2076CrossRefGoogle Scholar
  20. 20.
    Malinovsky D, Rodushkin I, Baxter DC, Ingri J, Öhlander B (2005) Int J Mass Spectrom 245:94–107CrossRefGoogle Scholar
  21. 21.
    Baxter DC, Rodushkin I, Engström E, Malinovsky D (2006) J Anal At Spectrom 21:427–430CrossRefGoogle Scholar
  22. 22.
    International Organisation for Standardization (2008) Guide to the expression of uncertainty in measurements (GUM:1995). International Organisation for Standardization, GenevaGoogle Scholar
  23. 23.
    Kragten J (1994) Analyst 119:2161–2165CrossRefGoogle Scholar
  24. 24.
    Vanhaecke F, Balcaen L, Malinovsky D (2009) J Anal At Spectrom 24:863–886CrossRefGoogle Scholar
  25. 25.
    Meija J, Mester Z (2008) Metrologia 45:53–62CrossRefGoogle Scholar
  26. 26.
    Sebenik RF et al (2005) Ullmann’s encyclopedia of chemical technology, 29th edn. Wiley-VCH Verlag, WeinheimGoogle Scholar
  27. 27.
    Jha MC (2001) In: Mishra B (ed.) Review of extraction processing, properties & applications of reactive metals. The Minerals, Metals & Materials Society, Warrendale. pp. 73–82Google Scholar
  28. 28.
    Walczyk T (2004) Anal Bioanal Chem 378:229–231CrossRefGoogle Scholar
  29. 29.
    Young ED, Galy A, Nagahara H (2002) Geochim Cosmochim Acta 66:1095–1104CrossRefGoogle Scholar
  30. 30.
    Malinovsky D, Vanhaecke F (2014) J Anal At Spectrom 29:1090–1097CrossRefGoogle Scholar
  31. 31.
    Malinovsky D, Hammarlund D, Ilyashuk B, Martinsson O, Gelting J (2007) Chem Geol 236:181–198CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LGC LimitedTeddingtonUK

Personalised recommendations