Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 26, pp 6607–6616 | Cite as

Magnetic actuator for the control and mixing of magnetic bead-based reactions on-chip

  • Miguel Berenguel-Alonso
  • Xavier Granados
  • Jordi Faraudo
  • Julián Alonso-Chamarro
  • Mar PuyolEmail author
Research Paper

Abstract

While magnetic bead (MB)-based bioassays have been implemented in integrated devices, their handling on-chip is normally either not optimal—i.e. only trapping is achieved, with aggregation of the beads—or requires complex actuator systems. Herein, we describe a simple and low-cost magnetic actuator to trap and move MBs within a microfluidic chamber in order to enhance the mixing of a MB-based reaction. The magnetic actuator consists of a CD-shaped plastic unit with an arrangement of embedded magnets which, when rotating, generate the mixing. The magnetic actuator has been used to enhance the amplification reaction of an enzyme-linked fluorescence immunoassay to detect Escherichia coli O157:H7 whole cells, an enterohemorrhagic strain, which have caused several outbreaks in food and water samples. A 2.7-fold sensitivity enhancement was attained with a detection limit of 603 colony-forming units (CFU) /mL, when employing the magnetic actuator.

Graphical Abstract

Keywords

Magnetic beads Magnetic actuator Lab on a chip Magnetic mixing Immunoassay 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministerio de Economía y Competitividad and FEDER (project CTQ2012-36165) and the Government of Catalonia (SGR 2009–0323 and scholarship FI-DGR 2012, co-funded by the ESF). The authors thank D. Izquierdo and I. Garcés for the development of the optical detection system, Prof. J. Mas for the use of the microbiology facilities, and N. Vigués, F. Pujol and N. Tomás for helpful discussion and technical advice.

Supplementary material

216_2014_8100_MOESM1_ESM.pdf (451 kb)
ESM 1 (PDF 451 kb)
ESM 2

(MPG 1.77 mb)

References

  1. 1.
    Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK, Allbritton NL (2012) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85(2):451–472CrossRefGoogle Scholar
  2. 2.
    Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82(12):4830–4847CrossRefGoogle Scholar
  3. 3.
    Alegret S (2003) Integrated analytical systems, vol XXXIX. Comprehensive Analytical Chemistry. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Gehring AG, Tu S-I (2011) High-throughput biosensors for multiplexed food-borne pathogen detection. Annu Rev Anal Chem 4(1):151–172CrossRefGoogle Scholar
  5. 5.
    Liébana S, Lermo A, Campoy S, Cortés MP, Alegret S, Pividori MI (2009) Rapid detection of Salmonella in milk by electrochemical magneto-immunosensing. Biosens Bioelectron 25(2):510–513CrossRefGoogle Scholar
  6. 6.
    van Reenen A, de Jong AM, den Toonder JMJ, Prins MWJ (2014) Integrated lab-on-chip biosensing systems based on magnetic particle actuation—a comprehensive review. Lab Chip 14(12):1966–1986CrossRefGoogle Scholar
  7. 7.
    Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563CrossRefGoogle Scholar
  8. 8.
    Choi J-W, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, Helmicki AJ, Henderson HT, Ahn CH (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2(1):27–30CrossRefGoogle Scholar
  9. 9.
    Laczka O, Maesa J-M, Godino N, del Campo J, Fougt-Hansen M, Kutter JP, Snakenborg D, Muñoz-Pascual F-X, Baldrich E (2011) Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosens Bioelectron 26(8):3633–3640CrossRefGoogle Scholar
  10. 10.
    Shikida M, Takayanagi K, Honda H, Ito H, Sato K (2006) Development of an enzymatic reaction device using magnetic bead-cluster handling. J Micromech Microeng 16(9):1875CrossRefGoogle Scholar
  11. 11.
    Sen A, Harvey T, Clausen J (2011) A microsystem for extraction, capture and detection of E-Coli O157:H7. Biomed Microdevices 13(4):705–715CrossRefGoogle Scholar
  12. 12.
    Sista RS, Eckhardt AE, Srinivasan V, Pollack MG, Palanki S, Pamula VK (2008) Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab Chip 8(12):2188–2196CrossRefGoogle Scholar
  13. 13.
    Saville SL, Woodward RC, House MJ, Tokarev A, Hammers J, Qi B, Shaw J, Saunders M, Varsani RR, St Pierre TG, Mefford OT (2013) The effect of magnetically induced linear aggregates on proton transverse relaxation rates of aqueous suspensions of polymer coated magnetic nanoparticles. Nanoscale 5(5):2152–2163CrossRefGoogle Scholar
  14. 14.
    Yeap SP, Ahmad AL, Ooi BS, Lim J (2012) Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28(42):14878–14891CrossRefGoogle Scholar
  15. 15.
    Peyman SA, Iles A, Pamme N (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9(21):3110–3117CrossRefGoogle Scholar
  16. 16.
    Vojtíšek M, Iles A, Pamme N (2010) Rapid, multistep on-chip DNA hybridisation in continuous flow on magnetic particles. Biosens Bioelectron 25(9):2172–2176CrossRefGoogle Scholar
  17. 17.
    Karle M, Miwa J, Czilwik G, Auwarter V, Roth G, Zengerle R, von Stetten F (2010) Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab Chip 10(23):3284–3290CrossRefGoogle Scholar
  18. 18.
    Sasso L, Johnston I, Zheng M, Gupte R, Ündar A, Zahn J (2012) Automated microfluidic processing platform for multiplexed magnetic bead immunoassays. Microfluid Nanofluid 13(4):603–612CrossRefGoogle Scholar
  19. 19.
    Lai JJ, Nelson KE, Nash MA, Hoffman AS, Yager P, Stayton PS (2009) Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip 9(14):1997–2002CrossRefGoogle Scholar
  20. 20.
    Ramadan Q, Gijs MAM (2011) Simultaneous sample washing and concentration using a “trapping-and-releasing” mechanism of magnetic beads on a microfluidic chip. Analyst 136(6):1157–1166CrossRefGoogle Scholar
  21. 21.
    Verbarg J, Kamgar-Parsi K, Shields AR, Howell PB, Ligler FS (2012) Spinning magnetic trap for automated microfluidic assay systems. Lab ChipGoogle Scholar
  22. 22.
    Herrmann M, Veres T, Tabrizian M (2006) Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. Lab Chip 6(4):555CrossRefGoogle Scholar
  23. 23.
    Herrmann M, Roy E, Veres T, Tabrizian M (2007) Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels. Lab Chip 7(11):1546CrossRefGoogle Scholar
  24. 24.
    Herrmann M, Veres T, Tabrizian M (2008) Quantification of low-picomolar concentrations of TNF-α in serum using the dual-network microfluidic ELISA platform. Anal Chem 80(13):5160–5167CrossRefGoogle Scholar
  25. 25.
    Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6(12):1484–1486CrossRefGoogle Scholar
  26. 26.
    Mukhopadhyay R (2007) When PDMS isn’t the best. Anal Chem 79(9):3248–3253CrossRefGoogle Scholar
  27. 27.
    Feng P (1995) Escherichia coli serotype O157:H7: novel vehicles of infection and emergence of phenotypic variants. Emerging Infect Dis 1(2):47–52CrossRefGoogle Scholar
  28. 28.
    Centers for Disease Control and Prevention () Reports of Selected E. coli Outbreak Investigations. http://www.cdc.gov/ecoli/outbreaks.html. Accessed 11 Dec 2013
  29. 29.
    Keene WE, McAnulty JM, Hoesly FC, Williams LP, Hedberg K, Oxman GL, Barrett TJ, Pfaller MA, Fleming DW (1994) A swimming-associated outbreak of hemorrhagic colitis caused by Escherichia coli O157:H7 and Shigella Sonnei. New Engl J Med 331(9):579–584CrossRefGoogle Scholar
  30. 30.
    Ymbern O, Sandez N, Calvo-Lopez A, Puyol M, Alonso-Chamarro J (2014) Gas diffusion as a new fluidic unit operation for centrifugal microfluidic platforms. Lab Chip 14(5):1014–1022CrossRefGoogle Scholar
  31. 31.
    Gomez-de Pedro S, Puyol M, Izquierdo D, Salinas I, de la Fuente JM, Alonso-Chamarro J (2012) A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization. Nanoscale 4(4):1328–1335CrossRefGoogle Scholar
  32. 32.
    Baldrich E, Vigués N, Mas J, Muñoz FX (2008) Sensing bacteria but treating them well: determination of optimal incubation and storage conditions. Anal Biochem 383(1):68–75CrossRefGoogle Scholar
  33. 33.
    Nunes P, Ohlsson P, Ordeig O, Kutter J (2010) Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluid 9(2–3):145–161CrossRefGoogle Scholar
  34. 34.
    Fonnum G, Johansson C, Molteberg A, Mørup S, Aksnes E (2005) Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J Magn Magn Mater 293(1):41–47CrossRefGoogle Scholar
  35. 35.
    De Las Cuevas G, Faraudo J, Camacho J (2008) Low-gradient magnetophoresis through field-induced reversible aggregation. J Phys Chem C 112(4):945–950CrossRefGoogle Scholar
  36. 36.
    Faraudo J, Andreu JS, Camacho J (2013) Understanding diluted dispersions of superparamagnetic particles under strong magnetic fields: a review of concepts, theory and simulations. Soft Matter 9(29):6654–6664CrossRefGoogle Scholar
  37. 37.
    Andreu JS, Barbero P, Camacho J, Faraudo J (2012) Simulation of magnetophoretic separation processes in dispersions of superparamagnetic nanoparticles in the noncooperative regime. J Nanomater 2012:10Google Scholar
  38. 38.
    Perez-Toralla K, Champ J, Mohamadi MR, Braun O, Malaquin L, Viovy J-L, Descroix S (2013) New non-covalent strategies for stable surface treatment of thermoplastic chips. Lab Chip 13(22):4409–4418CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Miguel Berenguel-Alonso
    • 1
  • Xavier Granados
    • 2
  • Jordi Faraudo
    • 2
  • Julián Alonso-Chamarro
    • 1
  • Mar Puyol
    • 1
    Email author
  1. 1.Group of Sensors and Biosensors (GSB), Department of ChemistryUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)BellaterraSpain

Personalised recommendations