Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 26, pp 6655–6664 | Cite as

Enumeration of non-labile oxygen atoms in dissolved organic matter by use of 16O/18O exchange and Fourier transform ion-cyclotron resonance mass spectrometry

  • Yury Kostyukevich
  • Alexey Kononikhin
  • Alexander Zherebker
  • Igor Popov
  • Irina Perminova
  • Eugene Nikolaev
Research Paper

Abstract

We report a simple approach for enumeration of non-labile oxygen atoms in individual molecules of dissolved organic matter (DOM), using acid-catalyzed 16O/18O exchange and ultrahigh-resolution Fourier-transform ion-cyclotron-resonance mass spectrometry (FTICR-MS). We found that by dissolving DOM in H2 18O at 95 °C for 20 days it is possible to replace all oxygen atoms of DOM molecules (excluding oxygen from ether groups) with 18O. The number of exchanges in each molecule can be determined using high-resolution FTICR. Using the proposed method we identified the number of non-labile oxygen atoms in 231 molecules composing DOM. Also, using a previously developed hydrogen–deuterium (H/D)-exchange approach we identified the number of labile hydrogen atoms in 450 individual molecular formulas. In addition, we observed that several backbone hydrogen atoms can be exchanged for deuterium under acidic conditions. The method can be used for structural and chemical characterization of individual DOM molecules, comparing different DOM samples, and investigation of biological pathways of DOM in the environment.

Keywords

Isotope exchange Dissolved organic matter FTICR ESI 

Notes

Acknowledgments

This work was supported by Russian Foundation for Basic Research (grants 13- 04-40110-n-komfi, 13-08-01445-a, 14-08-31652–mol-a).

Competing financial interest

The authors declare no competing financial interests.

Supplementary material

216_2014_8097_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2056 kb)

References

  1. 1.
    Chin WC, Orellana MV, Verdugo P (1998) Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391(6667):568–572CrossRefGoogle Scholar
  2. 2.
    Lovley DR, Coates JD, BluntHarris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382(6590):445–448. doi: 10.1038/382445a0 CrossRefGoogle Scholar
  3. 3.
    Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450(7169):537–U539. doi: 10.1038/nature06316 CrossRefGoogle Scholar
  4. 4.
    Schmitt–Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci U S A 107((7):2763–2768. doi: 10.1073/pnas.0912157107 CrossRefGoogle Scholar
  5. 5.
    Burges A, Hurst HM, Walkden SB, Dean FM, Hirst M (1963) Nature of humic acids. Nature 199:696–697CrossRefGoogle Scholar
  6. 6.
    Chefetz B, Hatcher PG, Hadar Y, Chen YN (1998) Characterization of dissolved organic matter extracted from composted municipal solid waste. Soil Sci Soc Am J 62(2):326–332CrossRefGoogle Scholar
  7. 7.
    Chefetz B, Tarchitzky J, Deshmukh AP, Hatcher PG, Chen Y (2002) Structural characterization of soil organic matter and humic acids in particle-size fractions of an agricultural soil. Soil Sci Soc Am J 66(1):129–141CrossRefGoogle Scholar
  8. 8.
    Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51(4):325–346. doi: 10.1016/0304-4203(95)00062-3 CrossRefGoogle Scholar
  9. 9.
    Senesi N, Miano T, Provenzano M, Brunetti G (1991) Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci 152(4):259–271. doi: 10.1097/00010694-199110000-00004 CrossRefGoogle Scholar
  10. 10.
    Frolund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8):1749–1758. doi: 10.1016/0043-1354(95)00323-1 CrossRefGoogle Scholar
  11. 11.
    Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405(6782):94–97. doi: 10.1038/35011098 CrossRefGoogle Scholar
  12. 12.
    Benner R, Hatcher P, Hedges J (1990) Early diagenesis of mangrove leaves in a tropical estuary - bulk chemical characterization using solid-state c-13 nmr and elemental analyses. Geochim Et Cosmochim Acta 54(7):2003–2013. doi: 10.1016/0016-7037(90)90268-P CrossRefGoogle Scholar
  13. 13.
    Hedges J, Hatcher P, Ertel J, Meyersschulte K (1992) A comparison of dissolved humic substances from seawater with amazon river counterparts by C-13-Nmr spectrometry. Geochim Et Cosmochim Acta 56(4):1753–1757. doi: 10.1016/0016-7037(92)90241-A CrossRefGoogle Scholar
  14. 14.
    Schmidt MWI, Knicker H, Hatcher PG, KogelKnabner I (1997) Improvement of C-13 and N-15 CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10 % hydrofluoric acid. Eur J Soil Sci 48(2):319–328. doi: 10.1111/j.1365-2389.1997.tb00552.x CrossRefGoogle Scholar
  15. 15.
    Nikolaev EN, Kostyukevich YI, Vladimirov GN (2014) Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: Theory and simulations. Mass spectrometry reviews. doi: 10.1002/mas.21422
  16. 16.
    Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17(1):1–35. doi: 10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K CrossRefGoogle Scholar
  17. 17.
    Popov IA, Nagornov K, Vladimirov GN, Kostyukevich YI, Nikolaev EN (2014) Twelve million resolving power on 4.7 T fourier transform ion cyclotron resonance instrument with dynamically harmonized cell-observation of fine structure in peptide mass spectra. J Am Soc Mass Spectrom 25(5):790–799. doi: 10.1007/s13361-014-0846-7 CrossRefGoogle Scholar
  18. 18.
    Kramer RW, Kujawinski EB, Hatcher PG (2004) Identification of black carbon derived structures in a volcanic ash soil humic acid by Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 38(12):3387–3395. doi: 10.1021/es030124m CrossRefGoogle Scholar
  19. 19.
    Kujawinski EB, Hatcher PG, Freitas MA (2002) High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: improvements and comparisons. Anal Chem 74(2):413–419. doi: 10.1021/ac0108313 CrossRefGoogle Scholar
  20. 20.
    Stenson AC, Landing WM, Marshall AG, Cooper WT (2002) Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. Anal Chem 74(17):4397–4409. doi: 10.1021/ac020019f CrossRefGoogle Scholar
  21. 21.
    Perminova IV, Dubinenkov IV, Kononikhin AS, Konstantinov AI, Zherebker AY, Andzhushev MA, Lebedev VA, Bulygina E, Holmes RM, Kostyukevich YI, Popov IA, Nikolaev EN (2014) Molecular mapping of sorbent selectivities with respect to isolation of arctic dissolved organic matter as measured by fourier transform mass spectrometry. Environ Sci Technol 48(13):7461–7468. doi: 10.1021/es5015423 CrossRefGoogle Scholar
  22. 22.
    Solouki T, Fort RC Jr, Alomary A, Fattahi A (2001) Gas phase hydrogen deuterium exchange reactions of a model peptide: FT-ICR and computational analyses of metal induced conformational mutations. J Am Soc Mass Spectrom 12(12):1272–1285. doi: 10.1016/S1044-0305(01)00315-4 CrossRefGoogle Scholar
  23. 23.
    Kim S, Kramer RW, Hatcher PG (2003) Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal Chem 75(20):5336–5344. doi: 10.1021/ac034415p CrossRefGoogle Scholar
  24. 24.
    Witt M, Fuchser J, Koch BP (2009) Fragmentation studies of fulvic acids using collision induced dissociation fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 81(7):2688–2694. doi: 10.1021/Ac802624s CrossRefGoogle Scholar
  25. 25.
    Solouki T, Freitas MA, Alomary A (1999) Gas-phase hydrogen/deuterium exchange reactions of fulvic acids: an electrospray ionization Fourier transform ion cyclotron resonance mass spectral study. Anal Chem 71(20):4719–4726. doi: 10.1021/Ac990185w CrossRefGoogle Scholar
  26. 26.
    Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG, Qian KN (2001) Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal Chem 73(19):4676–4681. doi: 10.1021/ac010560w CrossRefGoogle Scholar
  27. 27.
    Kostyukevich Y, Kononikhin A, Popov I, Kharybin O, Perminova I, Konstantinov A, Nikolaev E (2013) Enumeration of labile hydrogens in natural organic matter by use of hydrogen/deuterium exchange fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 85(22):11007–11013. doi: 10.1021/ac402609x
  28. 28.
    Kostyukevich Y, Kononikhin A, Popov I, Nikolaev E (2013) Simple atmospheric hydrogen/deuterium exchange method for enumeration of labile hydrogens by electrospray ionization mass spectrometry. Anal Chem 85(11):5330–5334. doi: 10.1021/ac4006606
  29. 29.
    Kostyukevich Y, Kononikhin A, Popov I, Starodubtzeva N, Kukaev E, Nikolaev E (2014) Letter: separation of tautomeric forms of [2-Nitrophloroglucinol-H]- by in-ESI source Hydrogen/deuterium exchange approach. Eur J Mass Spectrom 21(4):345–349. doi: 10.1255/ejms.1282
  30. 30.
    Kostyukevich Y, Kononikhin AS, Popov IA, Nikolaev EN (2014) In-ESI source Hydrogen/Deuterium exchange of carbohydrates ions. Analytical chemistry 86(5):2595–2600. doi: 10.1021/ac4038202
  31. 31.
    Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25(1):158–170. doi: 10.1002/Mas.20064 CrossRefGoogle Scholar
  32. 32.
    Bender ML, Heck HA (1967) Carbonyl oxygen exchange in general base catalyzed ester hydrolysis. J Am Chem Soc 89(5):1211–1220. doi: 10.1021/ja00981a030 CrossRefGoogle Scholar
  33. 33.
    Bender ML, Stone RR, Dewey RS (1956) Kinetics of isotopic oxygen exchange between substituted benzoic acids and water1. J Am Chem Soc 78(2):319–321. doi: 10.1021/ja01583a019 CrossRefGoogle Scholar
  34. 34.
    Byrn M, Calvin M (1966) Oxygen-18 exchange reactions of aldehydes and ketones. J Am Chem Soc 88(9):1916–1922. doi: 10.1021/ja00961a013 CrossRefGoogle Scholar
  35. 35.
    Gorenstein DG (1972) pH-rate profiles for the oxygen-18 exchange and epimerization of a phosphetane oxide. Rate-limiting pseudorotation. J Am Chem Soc 94(8):2808–2814. doi: 10.1021/ja00763a045 CrossRefGoogle Scholar
  36. 36.
    Mega TL, Cortes S, Van Etten RL (1990) The oxygen-18 isotope shift in carbon-13 nuclear magnetic resonance spectroscopy. 13. Oxygen exchange at the anomeric carbon of D-glucose, D-mannose, and D-fructose. J Org Chem 55(2):522–528. doi: 10.1021/jo00289a026 CrossRefGoogle Scholar
  37. 37.
    Redington RL (1976) Kinetics of oxygen-18 exchange between carboxylic acids and water. J Phys Chem 80(3):229–235. doi: 10.1021/j100544a003 CrossRefGoogle Scholar
  38. 38.
    Atzrodt J, Derdau V, Fey T, Zimmermann J (2007) The renaissance of H/D exchange. Angew Chem Int Ed 46(41):7744–7765. doi: 10.1002/anie.200700039 CrossRefGoogle Scholar
  39. 39.
    Prechtl MHG, Hoelscher M, Ben-David Y, Theyssen N, Loschen R, Milstein D, Leitner W (2007) H/D exchange at aromatic and heteroaromatic hydrocarbons using D2O as the deuterium source and ruthenium dihydrogen complexes as the catalyst. Angew Chem Int Ed 46(13):2269–2272. doi: 10.1002/anie.200603677 CrossRefGoogle Scholar
  40. 40.
    Nikolaev EN, Boldin IA, Jertz R, Baykut G (2011) Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J Am Soc Mass Spectrom 22(7):1125–1133. doi: 10.1007/s13361-011-0125-9 CrossRefGoogle Scholar
  41. 41.
    Kostyukevich YI, Vladimirov GN, Nikolaev EN (2012) Dynamically harmonized FT-ICR cell with specially shaped electrodes for compensation of inhomogeneity of the magnetic field. Computer simulations of the electric field and ion motion dynamics. J Am Soc Mass Spectrom 23(12):2198–2207CrossRefGoogle Scholar
  42. 42.
    Kaiser NK, Savory JJ, McKenna AM, Quinn JP, Hendrickson CL, Marshall AG (2011) Electrically compensated fourier transform ion cyclotron resonance cell for complex mixture mass analysis. Anal Chem 83(17):6907–6910. doi: 10.1021/Ac201546d CrossRefGoogle Scholar
  43. 43.
    Qi Y, O'Connor PB (2014) Data processing in fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom Rev. doi: 10.1002/mas.21414 Google Scholar
  44. 44.
    Savory JJ, Kaiser NK, McKenna AM, Xian F, Blakney GT, Rodgers RP, Hendrickson CL, Marshall AG (2011) Parts-per-billion fourier transform ion cyclotron resonance mass measurement accuracy with a “walking” calibration equation. Anal Chem 83(5):1732–1736. doi: 10.1021/Ac102943z CrossRefGoogle Scholar
  45. 45.
    Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MM, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci U S A 105(35):12932–12937. doi: 10.1073/pnas.0805257105 CrossRefGoogle Scholar
  46. 46.
    Hatcher PG, Nanny MA, Minard RD, Dible SD, Carson DM (1995) Comparison of two thermochemolytic methods for the analysis of lignin in decomposing gymnosperm wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH). Org Geochem 23(10):881–888. doi: 10.1016/0146-6380(95)00087-9 CrossRefGoogle Scholar
  47. 47.
    Hedges J, Cowie G, Ertel J, Barbour R, Hatcher P (1985) Degradation of carbohydrates and lignins in buried woods. Geochim Et Cosmochim Acta 49(3):701–711. doi: 10.1016/0016-7037(85)90165-6 CrossRefGoogle Scholar
  48. 48.
    Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66(4):1692–1697. doi: 10.1128/AEM.66.4.1692-1697.2000 CrossRefGoogle Scholar
  49. 49.
    Leenheer JA, Rostad CE (2004) Tannins and terpenoids as major precursors of Suwannee River fulvic acid, US Geological Survey Scientific Investigations Report 2004–5276 16 pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yury Kostyukevich
    • 1
    • 2
    • 5
  • Alexey Kononikhin
    • 1
    • 2
  • Alexander Zherebker
    • 3
  • Igor Popov
    • 2
    • 4
  • Irina Perminova
    • 3
  • Eugene Nikolaev
    • 1
    • 4
    • 5
  1. 1.Institute for Energy Problems of Chemical Physics Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  3. 3.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
  4. 4.Emanuel Institute for Biochemical Physics Russian Academy of SciencesMoscowRussia
  5. 5.Skolkovo Institute of Science and TechnologySkolkovoRussian Federation

Personalised recommendations