Analytical and Bioanalytical Chemistry

, Volume 406, Issue 27, pp 7003–7014 | Cite as

Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping

  • Tina Büchner
  • Daniela Drescher
  • Heike Traub
  • Petra Schrade
  • Sebastian Bachmann
  • Norbert Jakubowski
  • Janina Kneipp
Research Paper
Part of the following topical collections:
  1. Single Cell Analysis


The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing.


Gold nanoparticles Surface-enhanced Raman scattering LA-ICP-MS Fibroblast Cell Particle aggregation Endosome 



We thank S. Selve (ZELMI TU Berlin) for TEM support, R. Schneider (BAM Federal Institute for Materials Research and Testing) for providing access to the cell culture facility, A. Cossmer (BAM) for ICP-MS analysis and P. Lasch (CytoSpec, Inc.) for Cytospec software. Financial support from ERC grant no. 259432 (T.B, D.D., J.K.) is gratefully acknowledged.

Supplementary material

216_2014_8069_MOESM1_ESM.pdf (1.3 mb)
ESM 1 (PDF 1316 kb)


  1. 1.
    Thanh NTK, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem 74(7):1624–1628CrossRefGoogle Scholar
  2. 2.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521CrossRefGoogle Scholar
  3. 3.
    Aroca RF, Alvarez-Puebla RA, Pieczonka N, Sanchez-Cortez S, Garcia-Ramos JV (2005) Surface-enhanced Raman scattering on colloidal nanostructures. Adv Colloid Interface Sci 116(1–3):45–61CrossRefGoogle Scholar
  4. 4.
    Stuart DA, Yuen JM, Lyandres NSO, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal Chem 78(20):7211–7215CrossRefGoogle Scholar
  5. 5.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49(19):3280–3294CrossRefGoogle Scholar
  6. 6.
    Dreaden EC, Alkilany AM, Huang XH, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779CrossRefGoogle Scholar
  7. 7.
    Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782CrossRefGoogle Scholar
  8. 8.
    Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41(6):2256–2282CrossRefGoogle Scholar
  9. 9.
    Drescher D, Guttmann P, Büchner T, Werner S, Laube G, Hornemann A, Tarek B, Schneider G, Kneipp J (2013) Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells. Nanoscale 5(19):9193–9198CrossRefGoogle Scholar
  10. 10.
    Drescher D, Zeise I, Traub H, Guttmann P, Seifert S, Büchner T, Jakubowski N, Schneider G, Kneipp J (2014) In situ characterization of SiO2 nanoparticle biointeractions using BrightSilica. Adv Funct Mater. doi: 10.1002/adfm.201304126 Google Scholar
  11. 11.
    Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):1517–1519CrossRefGoogle Scholar
  12. 12.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Following the dynamics of pH in endosomes of live cells with SERS nanosensors. J Phys Chem C 114(16):7421–7426CrossRefGoogle Scholar
  13. 13.
    Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6(10):2225–2231CrossRefGoogle Scholar
  14. 14.
    Wilschut J, Hoekstra D (1984) Membrane fusion: from liposomes to biological membranes. Trends Biochem Sci 9(11):479–483CrossRefGoogle Scholar
  15. 15.
    Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55(1):663–700CrossRefGoogle Scholar
  16. 16.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7(9):2819–2823CrossRefGoogle Scholar
  17. 17.
    Ochsenkühn MA, Jess PRT, Stoquert H, Dholakia K, Campbell CJ (2009) Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: cellular response and sensor development. ACS Nano 3(11):3613–3621CrossRefGoogle Scholar
  18. 18.
    Drescher D, Kneipp J (2012) Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev 41(17):5780–5799CrossRefGoogle Scholar
  19. 19.
    Aaron J, Travis K, Harrison N, Sokolov K (2009) Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling. Nano Lett 9(10):3612–3618CrossRefGoogle Scholar
  20. 20.
    Rosman C, Pierrat S, Henkel A, Tarantola M, Schneider D, Sunnick E, Janshoff A, Sönnichsen C (2012) A new approach to assess gold nanoparticle uptake by mammalian cells: combining optical dark-field and transmission electron microscopy. Small 8(23):3683–3690CrossRefGoogle Scholar
  21. 21.
    Austin LA, Kang B, Yen C-W, El-Sayed MA (2011) Plasmonic imaging of human oral cancer cell communities during programmed cell death by nuclear-targeting silver nanoparticles. J Am Chem Soc 133(44):17594–17597CrossRefGoogle Scholar
  22. 22.
    Li KR, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91(22):227402CrossRefGoogle Scholar
  23. 23.
    Shalaev VM (1996) Electromagnetic properties of small-particle composites. Phys Rep 272(2–3):61–137CrossRefGoogle Scholar
  24. 24.
    McMahon J, Henry A-I, Wustholz K, Natan M, Freeman R, Van Duyne R, Schatz G (2009) Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394(7):1819–1825CrossRefGoogle Scholar
  25. 25.
    Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668CrossRefGoogle Scholar
  26. 26.
    Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708CrossRefGoogle Scholar
  27. 27.
    Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, Becker JS (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29(1):156–175Google Scholar
  28. 28.
    Giesen C, Wäntig L, Mairinger T, Drescher D, Kneipp J, Roos PH, Panne U, Jakubowski N (2011) Iodine as an elemental marker for imaging of single cells and tissue sections by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 26(11):2160–2165CrossRefGoogle Scholar
  29. 29.
    Konz I, Fernandez B, Fernandez ML, Pereiro R, Gonzalez H, Alvarez L, Coca-Prados M, Sanz-Medel A (2013) Gold internal standard correction for elemental imaging of soft tissue sections by LA-ICP-MS: element distribution in eye microstructures. Anal Bioanal Chem 405(10):3091–3096CrossRefGoogle Scholar
  30. 30.
    Niehoff AC, Moosmann A, Sobbing J, Wiehe A, Mulac D, Wehe CA, Reifschneider O, Blaske F, Wagner S, Sperling M, von Briesen H, Langer K, Karst U (2014) A palladium label to monitor nanoparticle-assisted drug delivery of a photosensitizer into tumor spheroids by elemental bioimaging. Metallomics 6(1):77–81CrossRefGoogle Scholar
  31. 31.
    Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N (2012) Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem 84(22):9684–9688CrossRefGoogle Scholar
  32. 32.
    Tkachenko A, Xie H, Franzen S, Feldheim DL (2005) Assembly and characterization of biomolecule-gold nanoparticle conjugates and their use in intracellular imaging. In: Rosenthal SJ, Wright DW (eds) Nanobiotechnology protocols, vol 303. Methods in molecular biology. Humana Press, pp 85–99. doi: 10.1385/1-59259-901-x:085
  33. 33.
    Joseph V, Matschulat A, Polte J, Rolf S, Emmerling F, Kneipp J (2011) SERS enhancement of gold nanospheres of defined size. J Raman Spectrosc 42(9):1736–1742CrossRefGoogle Scholar
  34. 34.
    Lindl T. GG (2008) Zell- und Gewebekultur, vol 6. Spektrum Akademischer VerlagGoogle Scholar
  35. 35.
    Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: Rationale and advances. Adv Drug Deliver Rev 65(1):121–138CrossRefGoogle Scholar
  36. 36.
    Salzman NH, Maxfield FR (1989) Fusion accessibility of endocytic compartments along the recycling and lysosomal endocytic pathways in intact-cells. J Cell Biol 109(5):2097–2104CrossRefGoogle Scholar
  37. 37.
    Geisow MJ, Evans WH (1984) pH in the endosome—measurements during pinocytosis and receptor-mediated endocytosis. Exp Cell Res 150(1):36–46CrossRefGoogle Scholar
  38. 38.
    Murphy RF, Powers S, Cantor CR (1984) Endosome pH measured in single cells by dual fluorescence flow-cytometry—rapid acidification of insulin to pH-6. J Cell Biol 98(5):1757–1762CrossRefGoogle Scholar
  39. 39.
    Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550CrossRefGoogle Scholar
  40. 40.
    Sakhtianchi R, Minchin RF, Lee K-B, Alkilany AM, Serpooshan V, Mahmoudi M (2013) Exocytosis of nanoparticles from cells: Role in cellular retention and toxicity. Adv Colloid Interface Sci 201–202:18–29CrossRefGoogle Scholar
  41. 41.
    Imoto Y, Yoshida Y, Yagisawa F, Kuroiwa H, Kuroiwa T (2011) The cell cycle, including the mitotic cycle and organelle division cycles, as revealed by cytological observations. J Electron Microsc 60:S117–S136CrossRefGoogle Scholar
  42. 42.
    Yan Y, Lai ZW, Goode RJA, Cui JW, Bacic T, Kamphuis MMJ, Nice EC, Caruso F (2013) Particles on the move: intracellular trafficking and asymmetric mitotic partitioning of nanoporous polymer particles. ACS Nano 7(6):5558–5567CrossRefGoogle Scholar
  43. 43.
    Sirimuthu NMS, Syme CD, Cooper JM (2010) Monitoring the uptake and redistribution of metal nanoparticles during cell culture using surface-enhanced Raman scattering spectroscopy. Anal Chem 82(17):7369–7373CrossRefGoogle Scholar
  44. 44.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667CrossRefGoogle Scholar
  45. 45.
    Kneipp J, Kneipp H, Kneipp K (2008) SERS-a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060CrossRefGoogle Scholar
  46. 46.
    Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40(3):1647–1671CrossRefGoogle Scholar
  47. 47.
    Stoorvogel W, Strous GJ, Geuze HJ, Oorschot V, Schwartzt AL (1991) Late endosomes derive from early endosomes by maturation. Cell 65(3):417–427CrossRefGoogle Scholar
  48. 48.
    Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010) Effects of cell culture media on the dynamic formation of protein–nanoparticle complexes and influence on the cellular response. ACS Nano 4(12):7481–7491CrossRefGoogle Scholar
  49. 49.
    Anderson DE, Becktel WJ, Dahlquist FW (1990) pH-Induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29(9):2403–2408Google Scholar
  50. 50.
    Parker FS (1983) Applications of infrared, Raman, and resonance Raman spectroscopy in biochemistry. Plenum Press, New York and LondonGoogle Scholar
  51. 51.
    Diaz Fleming G, Finnerty JJ, Campos-Vallette M, Célis F, Aliaga AE, Fredes C, Koch R (2009) Experimental and theoretical Raman and surface-enhanced Raman scattering study of cysteine. J Raman Spectrosc 40(6):632–638CrossRefGoogle Scholar
  52. 52.
    Stewart S, Fredericks PM (1999) Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface. Spectrochim Acta Part A Mol Biomol Spectrosc 55(7–8):1641–1660CrossRefGoogle Scholar
  53. 53.
    Kim SK, Kim MS, Suh SW (1987) Surface-enhanced Raman scattering (SERS) of aromatic amino acids and their glycyl dipeptides in silver sol. J Raman Spectrosc 18(3):171–175CrossRefGoogle Scholar
  54. 54.
    Podstawka E, Ozaki Y, Proniewicz LM (2005) Part III: Surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface. Appl Spectrosc 59(12):1516–1526CrossRefGoogle Scholar
  55. 55.
    De Gelder J, De Gussem K, Vandenabeele P, Moens L (2007) Reference database of Raman spectra of biological molecules. J Raman Spectrosc 38(9):1133–1147CrossRefGoogle Scholar
  56. 56.
    Ando J, Fujita K, Smith NI, Kawata S (2011) Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett 11(12):5344–5348CrossRefGoogle Scholar
  57. 57.
    Tang H-W, Yang XB, Kirkham J, Smith DA (2007) Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering. Anal Chem 79(10):3646–3653CrossRefGoogle Scholar
  58. 58.
    Brandenberger C, Muhlfeld C, Ali Z, Lenz AG, Schmid O, Parak WJ, Gehr P, Rothen-Rutishauser B (2010) Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6(15):1669–1678CrossRefGoogle Scholar
  59. 59.
    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105(38):14265–14270CrossRefGoogle Scholar
  60. 60.
    Inoue M, Ohtaka K (1983) Surface enhanced Raman scattering by metal spheres. I Cluster Effect J Phys Soc Jpn 52(11):3853–3864Google Scholar
  61. 61.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903CrossRefGoogle Scholar
  62. 62.
    Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500CrossRefGoogle Scholar
  63. 63.
    Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys Rev Lett 76(14):2444CrossRefGoogle Scholar
  64. 64.
    Kneipp K, Kneipp H (2013) Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering. Beilstein J Nanotechnol 4:834–842CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tina Büchner
    • 1
    • 2
  • Daniela Drescher
    • 1
    • 2
  • Heike Traub
    • 2
  • Petra Schrade
    • 3
  • Sebastian Bachmann
    • 3
  • Norbert Jakubowski
    • 2
  • Janina Kneipp
    • 1
    • 2
  1. 1.Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
  2. 2.BAM Federal Institute for Materials Research and TestingBerlinGermany
  3. 3.Department of AnatomyCharité UniversitätsmedizinBerlinGermany

Personalised recommendations