Analytical and Bioanalytical Chemistry

, Volume 407, Issue 1, pp 231–240 | Cite as

Comprehensive two-dimensional liquid chromatography tandem diode array detector (DAD) and accurate mass QTOF-MS for the analysis of flavonoids and iridoid glycosides in Hedyotis diffusa

  • Duxin Li
  • Oliver J. SchmitzEmail author
Paper in Forefront
Part of the following topical collections:
  1. Multidimensional Chromatography


The analysis of chemical constituents in Chinese herbal medicines (CHMs) is a challenge because of numerous compounds with various polarities and functional groups. Liquid chromatography coupled with quadrupole time-of-flight (QTOF) mass spectrometry (LC/MS) is of particular interest in the analysis of herbal components. One of the main attributes of QTOF that makes it an attractive analytical technique is its accurate mass measurement for both precursor and product ions. For the separation of CHMs, comprehensive two-dimensional chromatography (LCxLC) provides much higher resolving power than traditional one-dimensional separation. Therefore, a LCxLC-QTOF-MS system was developed and applied to the analysis of flavonoids and iridoid glycosides in aqueous extracts of Hedyotis diffusa (Rubiaceae). Shift gradient was applied in the two-dimensional separation in the LCxLC system to increase the orthogonality and effective peak distribution area of the analysis. Tentative identification of compounds was done by accurate mass interpretation and validation by UV spectrum. A clear classification of flavonol glycosides (FGs), acylated FGs, and iridoid glycosides (IGs) was shown in different regions of the LCxLC contour plot. In total, five FGs, four acylated FGs, and three IGs were tentatively identified. In addition, several novel flavonoids were found, which demonstrates that LCxLC-QTOF-MS detection also has great potential in herbal medicine analysis.


Comprehensive two-dimensional liquid chromatography LCxLC Hedyotis diffusa Chinese herbal medicine Flavonoids Iridoid glycosides 



The authors thank Agilent (Waldbronn, Germany) for the test version of the new LCxLC add-on for Chemstation ver. B.04.03 and an additional UHPLC pump and Phenomenex (Aschaffenburg, Germany) for the columns.

Supplementary material

216_2014_8057_MOESM1_ESM.pdf (729 kb)
ESM 1 (PDF 728 kb)


  1. 1.
    Jin Y, Liang T, Fu Q, Xiao YS, Feng JT, Ke YX, Liang XM (2009) J Chromatogr A 1216(11):2136–2141CrossRefGoogle Scholar
  2. 2.
    Zhou JL, Qi LW, Li P (2009) J Chromatogr A 1216(44):7582–7594CrossRefGoogle Scholar
  3. 3.
    Lacorte S, Fernandez‐Alba AR (2006) Mass. Spectrom Rev 25(6):866–880CrossRefGoogle Scholar
  4. 4.
    Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L (2008) J Chromatogr A 1184(1–2):353–368CrossRefGoogle Scholar
  5. 5.
    Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044CrossRefGoogle Scholar
  6. 6.
    Pol J, Hyotylainen T (2008) Anal Bioanal Chem 391:21–31CrossRefGoogle Scholar
  7. 7.
    Guiochon G, Marchetti N, Mriziq K, Shalliker RA (2008) J Chromatogr A 1189(1–2):109–168CrossRefGoogle Scholar
  8. 8.
    Jandera P (2012) A review. Cent Eur J Chem 10(3):844–875CrossRefGoogle Scholar
  9. 9.
    Bedani F, Kok WT, Janssen H-G (2009) Anal Chim Acta 654(1):77–84CrossRefGoogle Scholar
  10. 10.
    Li D, Schmitz OJ (2013) Anal Bioanal Chem 405:6511–6517CrossRefGoogle Scholar
  11. 11.
    Liu EH, Zhou T, Li GB, Li J, Huang XN, Pan F, Gao N (2012) J Sep Sci 35(2):263–272CrossRefGoogle Scholar
  12. 12.
    Cho WC (2011) Evidence-based anticancer materia medica. Evidence-based anticancer complementary and alternative medicine. Springer, Dordrecht Heidelberg London New YorkGoogle Scholar
  13. 13.
    Kim Y, Park EJ, Kim J, Kim YB, Kim SR, Kim YC (2001) J Nat Prod 64(1):75–78CrossRefGoogle Scholar
  14. 14.
    Liang YZ, Xie P, Chan KC (2004) J Chromatogr B 812(1–2):53–70CrossRefGoogle Scholar
  15. 15.
    Dück R, Sonderfeld H, Schmitz OJ (2012) J Chromatogr A 1246:69–75CrossRefGoogle Scholar
  16. 16.
    Hamad MN (2012) Pharm Globale (IJCP) 4(1):1–3Google Scholar
  17. 17.
    Cvetković D, Marković D, Cvetković D, Radovanović B (2011) J Serb Chem Soc 76(7):973–985CrossRefGoogle Scholar
  18. 18.
    Fathiazad F, Delazar A, Amiri R, Sarker SD (2010) Iran J Pharm Res 5(3):222–227Google Scholar
  19. 19.
    Lajis NH, Ahmad R (2006) Phytochemical studies and pharmacological activities of plants in genus Hedyotis/oldenlandia. In: Atta-ur R (Ed) Studies in Natural Products Chemistry, vol 33. Elsevier: pp 1057–1090.
  20. 20.
    Tang Q, Yang C, Chen F, Xin X, Zeng Y (2011) Sep Sci Technol 46(7):1184–1188CrossRefGoogle Scholar
  21. 21.
    Lu CM, Yang JJ, Wang PY, Lin CC (2000) Planta Med 66(04):374–377CrossRefGoogle Scholar
  22. 22.
    Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K (2010) J Mass Spectrom 45(7):703–714CrossRefGoogle Scholar
  23. 23.
    Li C, Xue X, Zhou D, Zhang F, Xu Q, Ren L, Liang X (2008) J Pharm Biomed Anal 48(1):205–211CrossRefGoogle Scholar
  24. 24.
    Nishihama Y, Masuda K, Yamaki M, Takagi S, Sakina K (1981) Planta Med 43:28–33CrossRefGoogle Scholar
  25. 25.
    Wu H, Tao X, Chen Q, Lao X (1991) J Nat Prod 54(1):254–256CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Applied Analytical Chemistry, Faculty of ChemistryUniversity of Duisburg-EssenEssenGermany

Personalised recommendations