Analytical and Bioanalytical Chemistry

, Volume 406, Issue 26, pp 6723–6733 | Cite as

A new BODIPY-based long-wavelength fluorescent probe for chromatographic analysis of low-molecular-weight thiols

  • Li-Yun Zhang
  • Feng-Qin Tu
  • Xiao-Feng Guo
  • Hong WangEmail author
  • Peng Wang
  • Hua-Shan Zhang
Research Paper


A new long-wavelength fluorescent probe, 1,7-dimethyl-3,5-distyryl-8-phenyl-(4′-iodoacetamido)difluoroboradiaza-s-indacene (DMDSPAB-I), was designed and synthesized for thiol labeling in high-performance liquid chromatography (HPLC). The excitation and emission wavelengths of DMDSPAB-I are 620 and 630 nm, respectively, with a high fluorescence quantum yield of 0.557, which is advantageous in preventing interference of intrinsic fluorescence from complex biological matrices and enabling high sensitivity HPLC. Based on DMDSPAB-I, a reversed-phase HPLC method was developed for measuring low-molecular-weight thiols including glutathione, cysteine, homocysteine, N-acetylcysteine, cysteinylglycine, and penicillamine. After the specific reaction of DMDSPAB-I with thiols, baseline separation of all six stable derivatives was achieved through isocratic elution on a C18 column within 25 min, with the limits of detection (signal-to-noise ratio = 3) from 0.24 nmol L−1 for glutathione to 0.72 nmol L−1 for penicillamine. The proposed method was validated in part by measuring thiols in blood samples from mice, with recoveries of 95.3–104.3 %.


1,7-Dimethyl-3,5-distyryl-8-phenyl-(4′-iodoacetamido)difluoroboradiaza-s-indacene Thiols long-wavelength Fluorescence detection High-performance liquid chromatography 



This work was supported by the National Natural Science Foundation of China (No. 20835004, 31170344 and 21105074, Beijing, China) and the Research Projects of General Administration of Quality Supervision, Inspection and Quarantine of China (No. 2013IK159).


  1. 1.
    Hong R, Han G, Fernández JM, Kim B-J, Forbes NS, Rotello VM (2006) J Am Chem Soc 128:1078–1079CrossRefGoogle Scholar
  2. 2.
    Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R (2006) J Biol Chem 281:35785–35793CrossRefGoogle Scholar
  3. 3.
    Bostom AG, Rosenberg IH, Silbershata H, Jacques PF, Selhub J, D’Agostino RB, Wilson PWF, Wolf PA (1999) Ann Intern Med 131:352–355CrossRefGoogle Scholar
  4. 4.
    Seshadri S, Wolf PA, Beiser AS, Selhub J, Au R, Jacques PF, Yoshita M, Rosenberg IH, D’Agostino RB, DeCarli C (2008) Arch Neurol 65:642–649CrossRefGoogle Scholar
  5. 5.
    Undas A, Brożek J, Jankowski M, Siudak Z, Szczeklik A, Jakubowski H (2006) Arterioscler Thromb Vasc Biol 26:1397–1404CrossRefGoogle Scholar
  6. 6.
    Collet JP, Allali Y, Lesty C, Tanguy ML, Silvain J, Ankri A, Blanchet B, Dumaine R, Gianetti J, Payot L, Weisel JW, Montalescot G (2006) Arterioscler Thromb Vasc Biol 26:2567–2573CrossRefGoogle Scholar
  7. 7.
    Kleinman WA, Richie JP Jr (2000) Biochem Pharmacol 60:19–29CrossRefGoogle Scholar
  8. 8.
    Brewer G (1995) Drugs 50:240–249CrossRefGoogle Scholar
  9. 9.
    Ivanov AR, Nazimov IV, Baratova L (2000) J Chromatogr A 895:157–166CrossRefGoogle Scholar
  10. 10.
    Conlan XA, Stupka N, McDermott GP, Francis PS, Barnett NW (2010) Biomed Chromatogr 24:455–457Google Scholar
  11. 11.
    Masi A, Ghisi R, Ferretti M (2002) J Plant Physiol 159:499–507CrossRefGoogle Scholar
  12. 12.
    Wada M, Hirose M, Kuroki M, Ikeda R, Sekitani Y, Takamura N (2013) Biomed Chromatogr 27:708–713CrossRefGoogle Scholar
  13. 13.
    Higashi Y, Yamashiro M, Yamamoto R, Fujii Y (2003) J Liq Chromatogr R T 26:3265–3275CrossRefGoogle Scholar
  14. 14.
    Guo XF, Wang H, Guo YH, Zhang ZX, Zhang HS (2009) J Chromatogr A 1216:3874–3880CrossRefGoogle Scholar
  15. 15.
    Guo XF, Zhu H, Wang H, Zhang HS (2013) J Sep Sci 36:658–664CrossRefGoogle Scholar
  16. 16.
    Miller J (2008) In: Resch-Genger U (ed) Standards, standardization and quality assurance in fluorescence measurements, 1st edn. Springer, BerlinGoogle Scholar
  17. 17.
    Qian G, Wang ZY (2010) Chem Asia J 5:1006–1029CrossRefGoogle Scholar
  18. 18.
    Lu J, Song Y, Shi W, Li X, Ma H (2012) Sensor Actuat B-Chem 161:615–620CrossRefGoogle Scholar
  19. 19.
    Maeda H, Matsuno H, Ushida M, Katayama K, Saeki K, Itoh N (2005) Angew Chem Int Ed 44:2922–2925CrossRefGoogle Scholar
  20. 20.
    Sun W, Li W, Li J, Zhang J, Du L, Li M (2012) Tetrahedron Lett 53:2332–2335CrossRefGoogle Scholar
  21. 21.
    Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G (2007) J Am Chem Soc 129:11666–11667CrossRefGoogle Scholar
  22. 22.
    Wang R, Chen L, Liu P, Zhang Q, Wang Y (2012) Chem Eur J 18:11343–11349CrossRefGoogle Scholar
  23. 23.
    Beija M, Afonso CAM, Martinho JMG (2009) Chem Soc Rev 38:2410–2433CrossRefGoogle Scholar
  24. 24.
    Patonay G, Antoine MD (1991) Anal Chem 63:321A–327ACrossRefGoogle Scholar
  25. 25.
    Shindy HA (2012) Basics. Org Chem 9:352–360Google Scholar
  26. 26.
    Loudet A, Burgess K (2007) Chem Rev 107:4891–4932CrossRefGoogle Scholar
  27. 27.
    Rurack K, Kollmannsberger M, Daub J (2001) New J Chem 25:289–292CrossRefGoogle Scholar
  28. 28.
    Dain JG (1987) J Label Compd Rad 24:499–504CrossRefGoogle Scholar
  29. 29.
    Matsumoto T, Urano Y, Shoda T, Kojima H, Nagano T (2007) Org Lett 9:3375–3377CrossRefGoogle Scholar
  30. 30.
    Eaton DF (1988) J Photochem Photobiol B 2:523–531CrossRefGoogle Scholar
  31. 31.
    Kubin RF, Fletcher AN (1982) J Lumin 27:455–462CrossRefGoogle Scholar
  32. 32.
    Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmueller A, Resch-Genger U (2009) Anal Chem 81:6285–6294CrossRefGoogle Scholar
  33. 33.
    Domenicali M, Caraceni P, Giannone F, Baldassarre M, Lucchetti G, Quarta C (2009) J Hepatol 51:991–999CrossRefGoogle Scholar
  34. 34.
    Fluttert M, Dalm S, Oitzl MS (2000) Lab Anim 34:372–378CrossRefGoogle Scholar
  35. 35.
    David Cole R, Stein William H, Moore S (1958) J Biol Chem 233:1359–1363Google Scholar
  36. 36.
    Wang H, Liang SC, Zhang ZM, Zhang HS (2004) Anal Chim Acta 512:281–286CrossRefGoogle Scholar
  37. 37.
    Liang SC, Wang H, Zhang ZM, Zhang HS (2005) Anal Lett 38:869–879CrossRefGoogle Scholar
  38. 38.
    Zhang HX, Chen JB, Guo XF, Wang H, Zhang HS (2013) Talanta 116:335–342CrossRefGoogle Scholar
  39. 39.
    Iciek M, Chwatko G, Lorenc-Koci E, Bald E, Włodek L (2004) Acta Biochim Pol 51:815–824Google Scholar
  40. 40.
    Maeso N, Garcia-Martinez D, Ruperez FJ, Cifuentes A, Barbas C (2005) J Chromatogr B 822:61–69CrossRefGoogle Scholar
  41. 41.
    Terashima C, Rao TN, Sarada BV, Kubota Y, Fujishima A (2003) Anal Chem 75:1564–1572CrossRefGoogle Scholar
  42. 42.
    Steele ML, Ooi L, Muench G (2012) Anal Biochem 429:45–52CrossRefGoogle Scholar
  43. 43.
    Ferin R, Pavao ML, Baptista J (2012) J Chromatogr B 911:15–20CrossRefGoogle Scholar
  44. 44.
    Liang SC, Wang H, Zhang ZM, Zhang HS (2005) Anal Bioanal Chem 381:1095–1100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Li-Yun Zhang
    • 1
  • Feng-Qin Tu
    • 1
  • Xiao-Feng Guo
    • 1
  • Hong Wang
    • 1
    Email author
  • Peng Wang
    • 2
  • Hua-Shan Zhang
    • 1
  1. 1.Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
  2. 2.Technology CenterHubei Entry-Exit Inspection and Quarantine BureauWuhanChina

Personalised recommendations