Analytical and Bioanalytical Chemistry

, Volume 406, Issue 23, pp 5685–5693 | Cite as

Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout

  • Sean Burnham
  • Jing Hu
  • Hany Anany
  • Lubov Brovko
  • Frederique Deiss
  • Ratmir Derda
  • Mansel W. GriffithsEmail author
Research Paper
Part of the following topical collections:
  1. Analytical Bioluminescence and Chemiluminescence


Wild-type T4 bacteriophage and recombinant reporter lac Z T4 bacteriophage carrying the β-galactosidase gene were used for detection of generic Escherichia coli by monitoring the release of β-galactosidase upon phage-mediated cell lysis. The reaction was performed on a paper-based portable culture device to limit the diffusion of reagents and, hence, increase the sensitivity of the assay, and to avoid handling large sample volumes, making the assay suitable for on-site analysis. Chromogenic (chlorophenol red-β-d-galactopyranoside, CPRG) and bioluminescent (6-O-β-galactopyranosyl-luciferin, Beta-Glo®) β-galactosidase substrates were tested in the assay. Water samples were first filtered through 0.45-μm pore size filters to concentrate bacteria. The filters were then placed into the paper-based device containing nutrient medium and incubated at 37 °C for 4 h. Bacteriophage with the respective indicator substrate was added to the device, and signal (color, luminescence) development was recorded with a digital camera, luminometer, or luminescence imaging device. It was demonstrated that as low as 40 or <10 colony-forming units (cfu) ml−1 of E. coli can be detected visually within 8 h when wild-type T4 bacteriophage or recombinant lacZ T4 bacteriophage were used in the assay, respectively. Application of the bioluminescent β-galactosidase substrate allowed reliable detection of <10 cfu ml−1 within 5.5 h. The specificity of the assay was demonstrated using a panel of microorganisms including Aeromonas hydrophila, Enterobacter cloacae, E. coli, and Salmonella Typhimurium.

Scheme for rapid E. coli assay including filtration of water sample, short incubation on the filter in a paper-based culture device, addition of bacteriophage and [beta]-galactosidase substrate, and recording/processing of the accumulated color or luminescence signal.


Bacteriophage T4 Escherichia coli β-Galactosidase Paper-based device Colorimetric assay Bioluminescence assay 



This work was supported by the NSERC Sentinel, Bioactive Paper Research Network.


  1. 1.
    Yager P, Domingo GJ, Gerdes J (2008) In: Annual review of biomedical engineering, vol 10. Annual review of biomedical engineering. Annual Reviews, Palo Alto, pp 107–144Google Scholar
  2. 2.
    Center for Disease Control and Prevention (2012) Global WASH-related diseases and contaminants. Accessed Jan 25 2014
  3. 3.
    Boubetra A, Le Nestour F, Allaert C, Feinberg M (2011) Appl Environ Microbiol 77(10):3360–3367CrossRefGoogle Scholar
  4. 4.
    Kleinheinz GT, Busse KM, Gorman W, McDermott CM (2012) Lake Res Manag 28(4):328–337CrossRefGoogle Scholar
  5. 5.
    US Environmental Protection Agency (2012) Recreational water quality control. Accessed Jan 25 2014
  6. 6.
    Byrne B, Stack E, Gilmartin N, O’Kennedy R (2009) Sensors 9(6):4407–4445CrossRefGoogle Scholar
  7. 7.
    Aldus CF, van Amerongen A, Ariens RMC, Peck MW, Wichers JH, Wyatt GM (2003) J Appl Microbiol 95(2):380–389CrossRefGoogle Scholar
  8. 8.
    Heo J, Hua SZ (2009) Sensors 9(6):4483–4502CrossRefGoogle Scholar
  9. 9.
    Brunt J, Webb MD, Peck MW (2010) Appl Environ Microbiol 76(13):4143–4150CrossRefGoogle Scholar
  10. 10.
    Foudeh AM, Didar TF, Veres T, Tabrizian M (2012) Lab Chip 12(18):3249–3266CrossRefGoogle Scholar
  11. 11.
    Kronlein MR, Stedtfeld RD, Sorensen J, Bhaduri P, Stedtfeld T, Eanes S, Harichandran V, Haynes K, Stevens M, Hashsham SA (2013) Water Environ Res 85(10):889–916CrossRefGoogle Scholar
  12. 12.
    Mandeville R, Griffiths M, Goodridge L, McIntyre L, Ilenchuk TT (2003) Anal Lett 36(15):3241–3259CrossRefGoogle Scholar
  13. 13.
    Mao CB, Liu AH, Cao BR (2009) Angew Chem Int Ed 48(37):6790–6810CrossRefGoogle Scholar
  14. 14.
    Hagens S, Loessner MJ (2007) Appl Microbiol Biotechnol 76(3):513–519CrossRefGoogle Scholar
  15. 15.
    Brovko LY, Anany H, Griffiths MW (2012) Adv Food Nutr Res 67:241–288CrossRefGoogle Scholar
  16. 16.
    Tolba M, Minikh O, Brovko LY, Evoy S, Griffiths MW (2010) Appl Environ Microbiol 76(2):528–535CrossRefGoogle Scholar
  17. 17.
    Minikh O, Tolba M, Brovko LY, Griffiths MW (2010) J Microbiol Meth 82(2):177–183CrossRefGoogle Scholar
  18. 18.
    Wu Y, Brovko L, Griffiths MW (2001) Lett Appl Microbiol 33(4):311–315CrossRefGoogle Scholar
  19. 19.
    Smartt AE, Ripp S (2011) Anal Bioanal Chem 400(4):991–1007CrossRefGoogle Scholar
  20. 20.
    Ulitzur N, Ulitzur S (2006) Appl Environ Microbiol 72(12):7455–7459CrossRefGoogle Scholar
  21. 21.
    Waddell TE, Poppe C (2000) FEMS Microbiol Lett 182:285–289CrossRefGoogle Scholar
  22. 22.
    Sarkis GJ, Jacobs WR, Hatfull GF (1995) Mol Microbiol 15(6):1055–1067CrossRefGoogle Scholar
  23. 23.
    Awais R, Fukudomi H, Miyanaga K, Unno H, Tanji Y (2006) Biotech Prog 22(3):853–859CrossRefGoogle Scholar
  24. 24.
    Oda M, Morita M, Unno H, Tanji Y (2004) Appl Environ Microbiol 70(1):527–534CrossRefGoogle Scholar
  25. 25.
    Goodridge L, Griffiths M (2002) Food Res Int 35(9):863–870CrossRefGoogle Scholar
  26. 26.
    Khoury MK, Parker I, Aswad DW (2010) Anal Biochem 397(1):129–131CrossRefGoogle Scholar
  27. 27.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Angew Chem Int Ed 46(8):1318–1320CrossRefGoogle Scholar
  28. 28.
    Martinez AW, Phillips ST, Whitesides GM (2008) Proc Natl Acad Sci U S A 105(50):19606–19611CrossRefGoogle Scholar
  29. 29.
    Ellerbee AK, Phillips ST, Siegel AC, Mirica KA, Martinez AW, Striehl P, Jain N, Prentiss M, Whitesides GM (2009) Anal Chem 81(20):8447–8452CrossRefGoogle Scholar
  30. 30.
    Kutter E (2009) In: Clokie MRJ, Kropinski AM (eds) Methods in molecular biology, vol 501. Methods in molecular biology. Humana Press Inc, Totowa, USAGoogle Scholar
  31. 31.
    New DC, Miller-Martini DM, Wong YH (2003) Phytother Res 17(5):439–448CrossRefGoogle Scholar
  32. 32.
    Goodridge L (2007) USA Patent 7,244,612Google Scholar
  33. 33.
    Anany H, Lingohr EJ, Villegas A, Ackermann HW, She YM, Griffiths MW, Kropinski AM (2011) Virol J 8. doi:24210.1186/1743-422x-8-242Google Scholar
  34. 34.
    Funes-Huacca M, Wu A, Szepesvari E, Rajendran P, Kwan-Wong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R (2012) Lab Chip 12(21):4269–4278CrossRefGoogle Scholar
  35. 35.
    Edberg SC, Rice EW, Karlin RJ, Allen MJ (2000) J Appl Microbiol 88:106S–116SCrossRefGoogle Scholar
  36. 36.
    Wohlsen T, Bayliss J, Bates J, Gray B, Johnson S, Schneider P (2008) J Wat Supply Res Technol AQUA 57(8):569–576CrossRefGoogle Scholar
  37. 37.
    Brenner KP, Rankin CC, Sivaganesan M (1996) J Microbiol Meth 27(2–3):111–119CrossRefGoogle Scholar
  38. 38.
    Hallas G, Giglio S, Capurso V, Monis PT, Grooby WL (2008) J Appl Microbiol 105(4):1138–1149CrossRefGoogle Scholar
  39. 39.
    McLain JET, Williams CF (2008) Water Res 42(15):4041–4048CrossRefGoogle Scholar
  40. 40.
    Reznikoff WS (1992) Mol Microbiol 6(17):2419–2422CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sean Burnham
    • 1
  • Jing Hu
    • 1
  • Hany Anany
    • 1
    • 3
  • Lubov Brovko
    • 1
  • Frederique Deiss
    • 2
  • Ratmir Derda
    • 2
  • Mansel W. Griffiths
    • 1
    Email author
  1. 1.Canadian Research Institute for Food SafetyUniversity of GuelphGuelphCanada
  2. 2.Department of ChemistryUniversity of AlbertaEdmontonCanada
  3. 3.Department of Microbiology, Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations