Analytical and Bioanalytical Chemistry

, Volume 406, Issue 22, pp 5513–5520 | Cite as

Ultrasensitive detection and identification of BRAF V600 mutations in fresh frozen, FFPE, and plasma samples of melanoma patients by E-ice-COLD-PCR

  • Alexandre How-Kit
  • Céleste Lebbé
  • Aurélie Bousard
  • Antoine Daunay
  • Nicolas Mazaleyrat
  • Christian Daviaud
  • Samia Mourah
  • Jörg Tost


A number of molecular diagnostic methods have been developed for the detection and identification of mutations in tumor samples, which are important for the choice of treatment in the context of personalized medicine. For the treatment of metastatic melanoma, Vemurafenib is recommended for patients with BRAF V600 activating mutations. However, the different assays developed to date for the detection of these mutations lack sensitivity or specificity or do not allow a sequencing-based identification or validation of the mutation. Recently, enhanced improved and complete enrichment co-amplification at lower denaturation temperature-polymerase chain reaction (E-ice-COLD-PCR) has been developed as a sensitive method for the detection and identification of mutations in KRAS codons 12/13. Here, we present the first E-ice-COLD-PCR assay for the detection and identification of BRAF codon 600 mutations, which has a large dynamic range, as 25 pg to 25 ng can be used as DNA input without any reduction in mutation enrichment efficiency, and which can detect down to 0.01 % of mutated alleles in a wild-type background. The assay has been validated on fresh frozen, formalin-fixed paraffin-embedded (FFPE), and plasma samples of melanoma patients and has allowed the detection and identification of BRAF mutations present in samples appearing as wild type using standard pyrosequencing, endpoint genotyping, or Sanger sequencing. Thus, the BRAF V600 E-ice-COLD-PCR assay is currently one of the most powerful molecular diagnostic tools for the ultrasensitive detection and identification of BRAF codon 600 mutations.


E-ice-COLD-PCR Melanoma BRAF V600 mutation Vemurafenib Molecular diagnostics 



The authors would like to thank Aurélie Sadoux (AP-HP) and Marie-Pierre Podgorniak (AP-HP) for technical assistance, Leigh Pascoe (CEPH) for his help in statistics, and Steven McGinn (CNG) for the critical reading of the manuscript.


The work in the presented manuscript was funded through the institutional budget of the CEA and the CEPH.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2014_7975_MOESM1_ESM.pdf (618 kb)
ESM 1 (PDF 617 kb)
216_2014_7975_MOESM2_ESM.xlsm (110 kb)
ESM 2 (XLSM 110 kb)
216_2014_7975_MOESM3_ESM.txt (95 kb)
ESM 3 (TXT 94 kb)


  1. 1.
    Fecher LA, Amaravadi RK, Flaherty KT (2008) The MAPK pathway in melanoma. Curr Opin Oncol 20(2):183–189. doi: 10.1097/CCO.0b013e3282f5271c CrossRefGoogle Scholar
  2. 2.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949–954. doi: 10.1038/nature00766 CrossRefGoogle Scholar
  3. 3.
    Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ, Hughes TM, Thompson JF, Scolyer RA, Kefford RF (2011) Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J Clin Oncol 29(10):1239–1246. doi: 10.1200/JCO.2010.32.4327 CrossRefGoogle Scholar
  4. 4.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516. doi: 10.1056/NEJMoa1103782 CrossRefGoogle Scholar
  5. 5.
    Forschner A, Niessner H, Bauer J, Bender B, Garbe C, Meier F (2013) Successful treatment with vemurafenib in BRAF V600K-positive cerebral melanoma metastasis. JAMA Dermatol 149(5):642–644. doi: 10.1001/jamadermatol.2013.372 CrossRefGoogle Scholar
  6. 6.
    Halait H, Demartin K, Shah S, Soviero S, Langland R, Cheng S, Hillman G, Wu L, Lawrence HJ (2012) Analytical performance of a real-time PCR-based assay for V600 mutations in the BRAF gene, used as the companion diagnostic test for the novel BRAF inhibitor vemurafenib in metastatic melanoma. Diagn Mol Pathol 21(1):1–8. doi: 10.1097/PDM.0b013e31823b216f CrossRefGoogle Scholar
  7. 7.
    Kristensen T, Clemmensen O, Hoejberg L (2013) Low incidence of minor BRAF V600 mutation-positive subclones in primary and metastatic melanoma determined by sensitive and quantitative real-time PCR. J Mol Diagn 15(3):355–361. doi: 10.1016/j.jmoldx.2012.12.003 CrossRefGoogle Scholar
  8. 8.
    Lade-Keller J, Romer KM, Guldberg P, Riber-Hansen R, Hansen LL, Steiniche T, Hager H, Kristensen LS (2013) Evaluation of BRAF mutation testing methodologies in formalin-fixed, paraffin-embedded cutaneous melanomas. J Mol Diagn 15(1):70–80. doi: 10.1016/j.jmoldx.2012.08.003 CrossRefGoogle Scholar
  9. 9.
    Chen D, Huang JF, Xia H, Duan GJ, Chuai ZR, Yang Z, Fu WL, Huang Q (2014) High-sensitivity PCR method for detecting BRAF V600Emutations in metastatic colorectal cancer using LNA/DNA chimeras to block wild-type alleles. Anal Bioanal Chem 406(9–10):2477–2487. doi: 10.1007/s00216-014-7618-x
  10. 10.
    Salvianti F, Pinzani P, Verderio P, Ciniselli CM, Massi D, De Giorgi V, Grazzini M, Pazzagli M, Orlando C (2012) Multiparametric analysis of cell-free DNA in melanoma patients. PLoS One 7(11):e49843. doi: 10.1371/journal.pone.0049843 CrossRefGoogle Scholar
  11. 11.
    Board RE, Ellison G, Orr MC, Kemsley KR, McWalter G, Blockley LY, Dearden SP, Morris C, Ranson M, Cantarini MV, Dive C, Hughes A (2009) Detection of BRAF mutations in the tumour and serum of patients enrolled in the AZD6244 (ARRY-142886) advanced melanoma phase II study. Br J Cancer 101(10):1724–1730. doi: 10.1038/sj.bjc.6605371 CrossRefGoogle Scholar
  12. 12.
    How Kit A, Mazaleyrat N, Daunay A, Nielsen HM, Terris B, Tost J (2013) Sensitive detection of KRAS mutations using Enhanced-ice-COLD-PCR mutation enrichment and direct sequence identification. Hum Mutat 34(11):1568–1580. doi: 10.1002/humu.22427 CrossRefGoogle Scholar
  13. 13.
    Milbury CA, Li J, Makrigiorgos GM (2011) Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA mutations. Nucleic Acids Res 39(1):e2. doi: 10.1093/nar/gkq899 CrossRefGoogle Scholar
  14. 14.
    Mancini I, Santucci C, Sestini R, Simi L, Pratesi N, Cianchi F, Valanzano R, Pinzani P, Orlando C (2010) The use of COLD-PCR and high-resolution melting analysis improves the limit of detection of KRAS and BRAF mutations in colorectal cancer. J Mol Diagn 12(5):705–711. doi: 10.2353/jmoldx.2010.100018 CrossRefGoogle Scholar
  15. 15.
    Pinzani P, Santucci C, Mancini I, Simi L, Salvianti F, Pratesi N, Massi D, De Giorgi V, Pazzagli M, Orlando C (2011) BRAFV600E detection in melanoma is highly improved by COLD-PCR. Clin Chim Acta 412(11–12):901–905. doi: 10.1016/j.cca.2011.01.014 CrossRefGoogle Scholar
  16. 16.
    Pinzani P, Salvianti F, Cascella R, Massi D, De Giorgi V, Pazzagli M, Orlando C (2010) Allele specific Taqman-based real-time PCR assay to quantify circulating BRAFV600E mutated DNA in plasma of melanoma patients. Clin Chim Acta 411(17–18):1319–1324. doi: 10.1016/j.cca.2010.05.024 CrossRefGoogle Scholar
  17. 17.
    Aung KL, Donald E, Ellison G, Bujac S, Fletcher L, Cantarini M, Brady G, Orr M, Clack G, Ranson M, Dive C, Hughes A (2014) Analytical validation of BRAF mutation testing from circulating free DNA using the amplification refractory mutation testing system. J Mol Diagn 16(3):343–3499. doi: 10.1016/j.jmoldx.2013.12.004

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexandre How-Kit
    • 1
  • Céleste Lebbé
    • 2
    • 3
    • 4
  • Aurélie Bousard
    • 5
  • Antoine Daunay
    • 1
  • Nicolas Mazaleyrat
    • 5
  • Christian Daviaud
    • 5
  • Samia Mourah
    • 6
    • 7
  • Jörg Tost
    • 1
    • 5
  1. 1.Laboratory for Functional GenomicsFondation Jean Dausset - CEPHParisFrance
  2. 2.Département de Dermatologie FranceAP-HP - Hôpital Saint-LouisParisFrance
  3. 3.Université Paris-DiderotParisFrance
  4. 4.INSERM U976ParisFrance
  5. 5.Laboratory for Epigenetics and Environment, Centre National de GénotypageCEA-Institut de GénomiqueEvryFrance
  6. 6.Laboratoire de Pharmacologie-GénétiqueAP-HP - Hôpital Saint-LouisParisFrance
  7. 7.INSERM UMR-S 940ParisFrance

Personalised recommendations