Analytical and Bioanalytical Chemistry

, Volume 406, Issue 20, pp 5019–5030 | Cite as

Determination of sulfadiazine in phosphate- and DOC-rich agricultural drainage water using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry

  • P. A. Léon Bouyou
  • Johan J. Weisser
  • Bjarne W. Strobel
Research Paper

Abstract

Trace levels of the veterinary antibiotic compound sulfadiazine (SDZ) can be determined in agricultural drainage water samples with this new method. Optimized sample pretreatment and solid-phase extraction was combined with liquid chromatography coupled to tandem mass spectrometry (SPE LC-MS/MS) using positive electrospray ionization. The linear dynamic range for the LC-MS/MS was assessed from 5 μg/L to 25 mg/L with a 15-point calibration curve displaying a coefficient of correlation r2 = 0.9915. Agricultural drainage water spiked at a concentration of 25 ng/L gave recoveries between 63 and 98 % (relative standard deviation 15 %), while at 10 ng/L, it showed a lower recovery of 32 % (relative standard deviation 47 %). The final SPE LC-MS/MS method had a limit of detection (LOD)Method and a limit of quantification (LOQ)Method of 7.5 and 23 ng/L agricultural drainage water, respectively. Determination of SDZ, spiked at a realistic concentration of 50 μg/L, in artificial drainage water (ADW) containing common and high levels of phosphate (0.05, 0.5, and 5 mg/L) gave recoveries between 70 and 92 % (relative standard deviation 7.4–12.9 %). Analysis of the same realistic concentration of SDZ in ADW, spiked with common and high levels of dissolved organic carbon (2, 6, and 15 mg/L) confirmed the possible adaptation of a tandem solid-phase extraction (strong anion exchange (SAX)-hydrophilic-lipophilic balance (HLB)) followed by liquid chromatography-tandem mass spectrometry methodology. Recoveries obtained ranged from 104 to 109 % (relative standard deviation 2.8–5.2 %). The new methods enable determination of the veterinary antibiotic compound SDZ in agricultural drainage water from field experiments and monitoring schemes for phosphate- and dissolved organic carbon (DOC)-rich water samples in intensive farming areas.

Figure

Clean-up and up-concentration of sulfadiazine from agricultural drainage water

Keywords

SDZ LC-MS/MS SPE Veterinary antibiotic Sulfonamide 

References

  1. 1.
    García-Galán MJ, Garrido T, Fraile J, Ginebreda A, Díaz-Cruz MS, Barceló D (2011) Application of a fully automated online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry for the determination of sulfonamides and their acetylated metabolites in groundwater. Anal Bioanal Chem 399:795–806CrossRefGoogle Scholar
  2. 2.
    Watanabe N, Bergamaschi BA, Loftin KA, Meyer MT, Harter T (2010) Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environ Sci Technol 44:6591–6600CrossRefGoogle Scholar
  3. 3.
    Campagnolo ER, Johnson KR, Karpati A, Rubin CS, Kolpin DW, Meyer MT, Esteban JE, Currier RW, Smith K, Thu KM, McGeehin M (2002) Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci Total Environ 299:89–95CrossRefGoogle Scholar
  4. 4.
    Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Con Tox 40:451–460CrossRefGoogle Scholar
  5. 5.
    Grote M, Vockel A, Schwarze D, Mehlich A, Freitag M (2004) Fate of antibiotics in food chain and environment originating from pig fattening. Fresenius Environ Bull 13:1216–1224Google Scholar
  6. 6.
    Haller MY, Müller SR, McArdell CS, Alder AC, Suter MJF (2002) Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry. J Chromatogr A 952:111–120CrossRefGoogle Scholar
  7. 7.
    Schmitt H, Haapakangas H, van Beelen P (2005) Effects of antibiotics on soil microorganisms: time and nutrients influence pollution-induced community tolerance. Soil Biol Biochem 37:1882–1892CrossRefGoogle Scholar
  8. 8.
    Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759CrossRefGoogle Scholar
  9. 9.
    Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  10. 10.
    Morishita T, Yamazaki M, Yata N, Kamada A (1973) Studies on absorption of drugs. VIII Physicochemical factors affecting absorption of sulfonamides from the rat small intestine. Chem Pharm Bull 21:2309–2322CrossRefGoogle Scholar
  11. 11.
    Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167CrossRefGoogle Scholar
  12. 12.
    Hu XG, Luo Y, Zhou QX (2010) Simultaneous analysis of selected typical antibiotics in manure by microwave-assisted extraction and LC-MSn. Chromatographia 71:217–223CrossRefGoogle Scholar
  13. 13.
    Kemper N, Färber H, Skutlarek D, Krieter J (2008) Analysis of antibiotic residues in liquid manure and leachate of dairy farms in Northern Germany. Agric Water Manag 95:1288–1292CrossRefGoogle Scholar
  14. 14.
    Pfeifer T, Tuerk J, Fuchs R (2005) Structural characterization of sulfadiazine metabolites using H/D exchange combined with various MS/MS experiments. J Am Soc Mass Spectrom 16:1687–1694CrossRefGoogle Scholar
  15. 15.
    Förster M, Laabs V, Lamshöft M, Groeneweg J, Zühlke S, Spiteller M, Krauss M, Kaupenjohann M, Amelung W (2009) Sequestration of manure-applied sulfadiazine residues in soils. Environ Sci Technol 43:1824–1830CrossRefGoogle Scholar
  16. 16.
    Lamshöft M, Sukul P, Zühlke S, Spiteller M (2007) Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs. Anal Bioanal Chem 388:1733–1745CrossRefGoogle Scholar
  17. 17.
    Schmidt B, Ebert J, Lamshöft M, Thiede B, Schumacher-Buffel R, Ji R, Corvini PFX, Schäffer A (2007) Fate in soil of 14C-sulfadiazine residues contained in the manure of young pigs treated with a veterinary antibiotic. J Environ Sci Health B 43:8–20CrossRefGoogle Scholar
  18. 18.
    Fan ZS, Casey FXM, Hakk H, Larsen GL, Khan E (2011) Sorption, fate, and mobility of sulfonamides in soils. Water Air Soil Pollut 218:49–61CrossRefGoogle Scholar
  19. 19.
    Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lützhøft HCH, Jørgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–394CrossRefGoogle Scholar
  20. 20.
    Zhou LJ, Ying GG, Liu S, Zhao JL, Chen F, Zhang RQ, Peng FQ, Zhang QQ (2012) Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1244:123–138CrossRefGoogle Scholar
  21. 21.
    Lindsey ME, Meyer M, Thurman EM (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73:4640–4646CrossRefGoogle Scholar
  22. 22.
    Thiele-Bruhn S, Aust MO (2004) Effects of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch Environ Contam Toxicol 47:31–39CrossRefGoogle Scholar
  23. 23.
    Bialk HM, Simpson AJ, Pedersen JA (2005) Cross-coupling of sulfonamide antimicrobial agents with model humic constituents. Environ Sci Technol 39:4463–4473CrossRefGoogle Scholar
  24. 24.
    Bialk HM, Pedersen JA (2007) NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environ Sci Technol 42:106–112CrossRefGoogle Scholar
  25. 25.
    Kay P, Blackwell PA, Boxall ABA (2004) Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environ Toxicol Chem 23:1136–1144CrossRefGoogle Scholar
  26. 26.
    Tolls J (2001) Sorption of veterinary pharmaceuticals in soils—a review. Environ Sci Technol 35:3397–3406CrossRefGoogle Scholar
  27. 27.
    Styczen M, Petersen CT, Koch CB, Gjettermann B (2011) Macroscopic evidence of sources of particles for facilitated transport during intensive rain. Vadose Zone J 10:1151–1161CrossRefGoogle Scholar
  28. 28.
    Seifrtová M, Nováková L, Lino C, Pena A, Solich P (2009) An overview of analytical methodologies for the determination of antibiotics in environmental waters. Anal Chim Acta 649:158–179CrossRefGoogle Scholar
  29. 29.
    Ye S, Yao ZW, Na GS, Wang JY, Ma DY (2007) Rapid simultaneous determination of 14 sulfonamides in wastewater by liquid chromatography tandem mass spectrometry. J Sep Sci 30:2360–2369CrossRefGoogle Scholar
  30. 30.
    Jacobsen AM, Halling-Sørensen B, Ingerslev F, Hansen SH (2004) Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurized liquid extraction, followed by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1038:157–170CrossRefGoogle Scholar
  31. 31.
    García-Galán MJ, Díaz-Cruz MS, Barceló D (2010) Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS). Talanta 81:355–366CrossRefGoogle Scholar
  32. 32.
    Na GS, Gu J, Ge LK, Zhang P, Wang Z, Liu CY, Zhang L (2011) Detection of 36 antibiotics in coastal waters using high performance liquid chromatography-tandem mass spectrometry. Chin J Oceanol Limnol 29:1093–1102CrossRefGoogle Scholar
  33. 33.
    Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Cadmiun and copper release kinetics in relation to afforestation of cultivated soil. Geochim Cosmochim Acta 65:1233–1242CrossRefGoogle Scholar
  34. 34.
    Schlüsener MP, Bester K (2005) Determination of steroid hormones, hormone conjugates and macrolide antibiotics in influents and effluents of sewage treatment plants utilizing high-performance liquid chromatography/tandem mass spectrometry with electrospray and atmospheric pressure chemical ionization. Rapid Commun Mass Spectrom 19:3269–3278CrossRefGoogle Scholar
  35. 35.
    The International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2005) Validation of analytical procedures: text and methodology Q2. http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html. Accessed 26 Feb 2014
  36. 36.
    Klagkou K, Pullen F, Harrison M, Organ A, Firth A, Langley GJ (2003) Fragmentation pathways of sulphonamides under electrospray tandem mass spectrometric conditions. Rapid Commun Mass Spectrom 17:2373–2379CrossRefGoogle Scholar
  37. 37.
    Budzikiewicz H, Djerassi C, Williams DH (1967) Mass spectrometry of organic compounds. Holden-Day Inc, San FranciscoGoogle Scholar
  38. 38.
    Warrner TJ, Royer TV, Tank JL, Griffiths NA, Rosi-Marshall EJ, Whiles MR (2009) Dissolved organic carbon in streams from artificially drained and intensively farmed watersheds in Indiana, USA. Biogeochemistry 95:295–307CrossRefGoogle Scholar
  39. 39.
    Andersen HE, Larsen SE, Kronvang B, Hansen KM, Laubel AR, Windolf J, Muus K (2006) Fosfat i drænvand. Vand og jord 13:152–156 (in Danish)Google Scholar
  40. 40.
    Poulsen HD, Rubæk GH (2005) Fosfat i dansk landbrug – Omsætning, tab og virkemidler mod tab. DJF Rapport Husdyrbrug 93–121 (in Danish)Google Scholar
  41. 41.
    Vidon P, Wagner LE, Soyeux E (2008) Changes in the character of DOC in streams during storms in two Midwestern watersheds with contrasting land uses. Biogeochemistry 88:257–270CrossRefGoogle Scholar
  42. 42.
    Penn CJ, Bryant RB, Kleinman PJA, Allen AL (2007) Removing dissolved phosphorus from drainage ditch water with phosphorus sorbing materials. J Soil Water Conserv 62:269–276Google Scholar
  43. 43.
    Zirkler D, Lang F, Kaupenjohann M (2012) “Lost in filtration”—the separation of soil colloids from larger particles. Colloid Surf A 399:35–40CrossRefGoogle Scholar
  44. 44.
    Heuer H, Solehati Q, Zimmerling U, Kleineidam K, Schloter M, Müller T, Focks A, Thiele-Bruhn S, Smalla K (2011) Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl Environ Microbiol 77:2527–2530CrossRefGoogle Scholar
  45. 45.
    Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. A. Léon Bouyou
    • 1
  • Johan J. Weisser
    • 2
  • Bjarne W. Strobel
    • 1
  1. 1.Section of Environmental Chemistry and Physics, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksbergDenmark
  2. 2.Section of Analytical Biosciences, Department of PharmacyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations