Analytical and Bioanalytical Chemistry

, Volume 406, Issue 30, pp 7841–7853 | Cite as

Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques

  • Ugo Till
  • Mireille Gaucher-Delmas
  • Pascale Saint-Aguet
  • Glenn Hamon
  • Jean-Daniel Marty
  • Christophe Chassenieux
  • Bruno Payré
  • Dominique Goudounèche
  • Anne-Françoise Mingotaud
  • Frédéric Violleau
Research Paper
Part of the following topical collections:
  1. Field- and Flow-based Separations


Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.


Asymmetrical flow field-flow fractionation Polymersomes Self-assemblies Shape Molecular weight 



The authors wish to thank the French ANR (ANR COPOPDT), PRES Toulouse and Midi-Pyrénées Region for funding and PhD grant for U. Till. EU (FEDER-35477: Nano-objets pour la biotechnologie) is greatly acknowledged for financial support (AFM instrument). LLB is thanked for beam time access and Annie Brûlet for fruitful discussion.

Supplementary material

216_2014_7891_MOESM1_ESM.pdf (119 kb)
ESM 1 (PDF 118 kb)


  1. 1.
    Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed 48(5):872–897CrossRefGoogle Scholar
  2. 2.
    Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D, Cai S, Photos P, Ahmed F (2007) Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog Polym Sci 32:838–857CrossRefGoogle Scholar
  3. 3.
    Le Meins J-F, Sandre O, Lecommandoux S (2011) Recent trends in the tuning of polymersomes’ membrane. Eur Phys J E 34(2):14CrossRefGoogle Scholar
  4. 4.
    Lee JS, Feijen J (2012) Polymersomes for drug delivery: design, formation and characterization. J Control Release 161(2):473–483CrossRefGoogle Scholar
  5. 5.
    Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269CrossRefGoogle Scholar
  6. 6.
    LoPresti C, Lomas H, Massignani M, Smart T, Battaglia G (2009) Polymersomes: nature inspired nanometer sized compartments. J Mater Chem 19(22):3576–3590CrossRefGoogle Scholar
  7. 7.
    Meng F, Zhong Z (2011) Polymersomes spanning from nano- to microscales: advanced vehicles for controlled drug delivery and robust vesicles for virus and cell mimicking. J Phys Chem Lett 2(13):1533–1539CrossRefGoogle Scholar
  8. 8.
    Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W (2011) Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles. Acc Chem Res 44(10):1039–1049CrossRefGoogle Scholar
  9. 9.
    Zattoni A, Roda B, Borghi F, Marassi V, Reschiglian P (2013) Flow field flow fractionation for the analysis of nanoparticles used in drug delivery. J Pharm Biomed Anal under press. doi: 10.1016/j.jpba.2013.08.018
  10. 10.
    Bria C, Violleau F, Williams SKR (2013) Field-flow fractionation for biological, natural, and synthetic polymers: recent advances and trends. Lc Gc Asia Pac 16(4):8–16Google Scholar
  11. 11.
    Nilsson L (2013) Separation and characterization of food macromolecules using field-flow fractionation: a review. Food Hydrocoll 30(1):1–11CrossRefGoogle Scholar
  12. 12.
    von der Kammer F, Legros S, Larsen EH, Loeschner K, Hofmann T (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal Chem 30(3):425–436CrossRefGoogle Scholar
  13. 13.
    Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218(27):4078–4103CrossRefGoogle Scholar
  14. 14.
    Yohannes G, Jussila M, Hartonen K, Riekkola ML (2011) Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles. J Chromatogr A 1218(27):4104–4116CrossRefGoogle Scholar
  15. 15.
    Qureshi RN, Kok WT (2011) Application of flow field-flow fractionation for the characterization of macromolecules of biological interest: a review. Anal Bioanal Chem 399(4):1401–1411CrossRefGoogle Scholar
  16. 16.
    Rambaldi DC, Reschiglian P, Zattoni A (2011) Flow field-flow fractionation: recent trends in protein analysis. Anal Bioanal Chem 399(4):1439–1447CrossRefGoogle Scholar
  17. 17.
    Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635(2):132–143CrossRefGoogle Scholar
  18. 18.
    Reschiglian P, Moon MH (2008) Flow field-flow fractionation: a pre-analytical method for proteomics. J Proteome 71(3):265–276CrossRefGoogle Scholar
  19. 19.
    Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm 58(2):369–383CrossRefGoogle Scholar
  20. 20.
    Pasch H, Makan AC, Chirowodza H, Ngaza N, Hiller W (2013) Analysis of complex polymers by multidetector field-flow fractionation. Anal Bioanal Chem. doi: 10.1007/s00213-013-7308-0 Google Scholar
  21. 21.
    Bednar AJ, Poda AR, Mitrano DM, Kennedy AJ, Gray EP, Ranville JF, Hayes CA, Crocker FH, Steevens JA (2013) Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. Talanta 104:140–148CrossRefGoogle Scholar
  22. 22.
    Gigault J, Hackley VA (2013) Differentiation and characterization of isotopically modifier silver nanoparticles in aqueous media using asymmetric flow field flow fractionation coupled to optical detection and mass spectrometry. Anal Chim Acta 763:57–66CrossRefGoogle Scholar
  23. 23.
    Hinterwith H, Wiedmer SK, Moilanen M, Lehner A, Allmaier G, Waitz T, Lindner W, Lämmerhofer M (2013) Comparative method evaluation for size and size-distribution analysis of gold nanoparticles. J Sep Sci 36:2952–2961CrossRefGoogle Scholar
  24. 24.
    Loeschner K, Navratilova J, Legros S, Wagner S, Grombe R, Snell J, von der Krammer F, Larsen EH (2013) Optimization and evaluation of asymmetrical flow field-flow fractionation of silver nanoparticles. J Chromatogr A 1272:116–125CrossRefGoogle Scholar
  25. 25.
    Runyon JR, Goering A, Yong K-T, Ratanathanawongs W (2013) Preparation of narrow dispersity gold nanorods by asymmetrical flow field flow fractionation and investigation of surface plasmon resonance. Anal Chem 85:940–948CrossRefGoogle Scholar
  26. 26.
    Moon MH, Giddins JC (1993) Size distribution of liposomes by flow field-flow fractionation. J Pharm Biomed Anal 11:911–920CrossRefGoogle Scholar
  27. 27.
    Jahn A, Vreeland WN, DeVoes DL, Locascio LE, Gaitan M (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293CrossRefGoogle Scholar
  28. 28.
    Kalucerovic GN, Dietrich A, Kommera H, Kuntsche J, Mäder K, Mueller T, Paschke R (2012) Liposomes as vehicles for water insoluble platinum-based potential drug: 2-(4-(tetrahydro-2H-pyran-2-yloxy)-undecyl)-propane-1,3-diamminedichloroplatinum(II). Eur J Med Chem 54:567–572CrossRefGoogle Scholar
  29. 29.
    Kang DY, Kim MJ, Kim ST, Oh KS, Yuk SH, Lee S (2008) Size characterization of drug-loaded polymeric core/shell nanoparticles using asymmetrical flow field-flow fractionation. Anal Bioanal Chem 390:2183–2188CrossRefGoogle Scholar
  30. 30.
    Kuntsche J, Decker C, Fahr A (2012) Analysis of liposomes using asymmetrical flow field-flow fractionation: separation conditions and drug/lipid recovery. J Sep Sci 35:1993–2001CrossRefGoogle Scholar
  31. 31.
    Horie M, Kato H, Iwahashi H (2013) Cellular effects of manufactured nanoparticles: effect of adsorption ability of nanoparticles. Arch Toxicol. doi: 10.1007/s00204-013-1033-5 Google Scholar
  32. 32.
    Zillies JC, Zwiorek K, Winter G, Coester C (2007) Method for quantifying the PEGylation of gelatin nanoparticle drug carrier systems using asymmetrical flow field-flow fractionation and refractive index detection. Anal Chem 79:4574–4580CrossRefGoogle Scholar
  33. 33.
    Schädlich A, Caysa H, Mueller T, Tenambergen F, Rose C, Göpferich A, Kuntsche J, Mäder K (2011) Tumor accumulation of NIR fluorescent PEG-PLA nanoparticles: impact of particle size and human xenograft tumor model. ACS Nano 5:8710–8720CrossRefGoogle Scholar
  34. 34.
    Schädlich A, Rose C, Kuntsche J, Caysa H, Mueller T, Göpferich A, Mäder K (2011) How stealthy are PEG-PLA nanoparticles? An NIR in vivo study combined with detailed size measurements. Pharm Res 28(1995–2007)Google Scholar
  35. 35.
    Ehrhart J, Mingotaud A-F, Violleau F (2011) Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi elastic light scattering for characterization of poly(ethyleneglycol-b-ε-caprolactone) block copolymer self-assemblies used as drug carriers for photodynamic therapy. J Chromatogr A 1218:4249–4256CrossRefGoogle Scholar
  36. 36.
    Knop K, Mingotaud A-F, El-Akra N, Violleau F, Souchard J-P (2009) Monomeric pheophorbide(a)-containing poly(ethyleneglycol-b-ε-caprolactone)micelles for photodynamic therapy. Photochem Photobiol Sci 8:396–404CrossRefGoogle Scholar
  37. 37.
    Miller T, Rachel R, Besheer A, Uezguen S, Weigandt M, Göpferich A (2012) Comparative investigations on in vitro serum stability of polymeric micelle formulations. Pharm Res 29:448–459CrossRefGoogle Scholar
  38. 38.
    Brulet A, Lairez D, Lapp A, Cotton JP (2007) Improvement of data treatment in small-angle neutron scattering. J Appl Crystallogr 40:165–177CrossRefGoogle Scholar
  39. 39.
    Cotton JP (1991) In: Lindler P. Zemb T (eds) Neutron, x-ray and light scattering. North Holland, Amsterdam, p 19Google Scholar
  40. 40.
    Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973CrossRefGoogle Scholar
  41. 41.
    Sachl R, Stepanek M, Prochazka K, HumpolicÌŒkova J, Hof M (2007) Fluorescence study of the solvation of fluorescent probes prodan and laurdan in poly(caprolactone)-block-poly(ethylene oxide) vesicles in aqueous solutions with tetrahydrofurane. Langmuir 24(1):288–295CrossRefGoogle Scholar
  42. 42.
    Sachl R, Uchman M, Matejicek P, Prochazka K, Stepanek M, Spirkova M (2007) Preparation and characterization of self-assembled nanoparticles formed by poly(ethylene oxide)-block-poly(Îμ-caprolactone) copolymers with long poly(caprolactone) blocks in aqueous solutions. Langmuir 23(6):3395–3400CrossRefGoogle Scholar
  43. 43.
    Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR (2012) The shape of things to come: importance of design in nanotechnology for drug delivery. Ther Deliv 3(2):181–194CrossRefGoogle Scholar
  44. 44.
    Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22:115101CrossRefGoogle Scholar
  45. 45.
    Gayet F, Marty J-D, Brulet A (2011) Vesicles in ionic liquids. Langmuir 27(16):9706–9710CrossRefGoogle Scholar
  46. 46.
    Hocine S, Cui D, Rager M-N, Di Cicco A, Liu J-M, Wdzieczak-Bakala J, Brulet A (2013) Polymersomes with PEG corona: structural changes and controlled release induced by temperature variation. Langmuir 29(5):1356–1369CrossRefGoogle Scholar
  47. 47.
    Salva R, Le Meins J-F, Sandre O, Brulet A, Schmutz M, Guenoun P, Lecommandoux S (2013) Polymersome shape transformation at the nanoscale. ACS Nano 7(10):9298–9311CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ugo Till
    • 1
    • 2
  • Mireille Gaucher-Delmas
    • 2
  • Pascale Saint-Aguet
    • 3
  • Glenn Hamon
    • 1
  • Jean-Daniel Marty
    • 1
  • Christophe Chassenieux
    • 4
  • Bruno Payré
    • 5
  • Dominique Goudounèche
    • 5
  • Anne-Françoise Mingotaud
    • 1
  • Frédéric Violleau
    • 2
  1. 1.Université de Toulouse, UPS/CNRS, IMRCPToulouse Cedex 9France
  2. 2.Université de Toulouse, Institut National Polytechnique de Toulouse–Ecole d’Ingénieurs de Purpan, Département Sciences Agronomiques et Agroalimentaires, UPSP/DGER 115Toulouse Cedex 03France
  3. 3.TechnopolymInstitut de Chimie de ToulouseToulouse Cedex 9France
  4. 4.LUNAM Université, Université du Maine, IMMM UMR CNRS 6283, Département PCILe Mans Cedex 09France
  5. 5.Centre de Microscopie Electronique Appliquée à la Biologie, Faculté de Médecine Toulouse RangueilUniversité de ToulouseToulouse cedex 4France

Personalised recommendations