Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 19, pp 4691–4704 | Cite as

Novel contribution on the diagenetic physicochemical features of bone and teeth minerals, as substrates for ancient DNA typing

  • A. Grunenwald
  • C. Keyser
  • A. M. Sautereau
  • E. Crubézy
  • B. Ludes
  • C. Drouet
Research Paper

Abstract

The extraction of DNA from skeletal remains is a major step in archeological or forensic contexts. However, diagenesis of mineralized tissues often compromises this task although bones and teeth may represent preservation niches allowing DNA to persist over a wide timescale. This exceptional persistence is not only explained on the basis of complex organo-mineral interactions through DNA adsorption on apatite crystals composing the mineral part of bones and teeth but is also linked to environmental factors such as low temperatures and/or a dry environment. The preservation of the apatite phase itself, as an adsorption substrate, is another crucial factor susceptible to significantly impact the retrieval of DNA. With the view to bring physicochemical evidence of the preservation or alteration of diagenetic biominerals, we developed here an analytical approach on various skeletal specimens (ranging from ancient archeological samples to recent forensic specimens), allowing us to highlight several diagenetic indices so as to better apprehend the complexity of bone diagenesis. Based on complementary techniques (X-ray diffraction (XRD), Fourier transform infrared (FTIR), calcium and phosphate titrations, SEM-EDX, and gravimetry), we have identified specific indices that allow differentiating 11 biological samples, primarily according to the crystallinity and maturation state of the apatite phase. A good correlation was found between FTIR results from the analysis of the v 3(PO4) and v 4(PO4) vibrational domains and XRD-based crystallinity features. A maximal amount of information has been sought from this analytical approach, by way of optimized posttreatment of the data (spectral subtraction and enhancement of curve-fitting parameters). The good overall agreement found between all techniques leads to a rather complete picture of the diagenetic changes undergone by these 11 skeletal specimens. Although the heterogeneity and scarcity of the studied samples did not allow us to seek direct correlations with DNA persistence, the physicochemical parameters described in this work permit a fine differentiation of key properties of apatite crystals among post mortem samples. As a perspective, this analytical approach could be extended to more numerous sets of specimens so as to draw statistical relationships between mineral and molecular conservation.

Keywords

Bone Teeth Diagenesis Ancient DNA Apatite Carbonate content FTIR Crystallinity 

Notes

Acknowledgments

This research was supported by the Institute of Ecology and Environment (INEE) and the Institute of Chemistry (INC) of the French National Center for Scientific Research (CNRS).

References

  1. 1.
    Tütken T, Vennemann TW (2011) Fossil bones and teeth: preservation or alteration of biogenic compositions? Palaeogeogr Palaeoclimatol Palaeoecol 310:1–8. doi: 10.1016/j.palaeo.2011.06.020 CrossRefGoogle Scholar
  2. 2.
    Price TD, Schoeninger MJ, Armelagos GJ (1985) Bone chemistry and past behavior: an overview. J Hum Evol 14:419–447CrossRefGoogle Scholar
  3. 3.
    Lee-Thorp JA (2008) On isotopes and old bones. Archaeometry 50:925–950. doi: 10.1111/j.1475-4754.2008.00441.x CrossRefGoogle Scholar
  4. 4.
    Keyser-Tracqui C, Ludes B (2005) Methods for the study of ancient DNA. Methods Mol Biol 297:253–264Google Scholar
  5. 5.
    Rohland N, Hofreiter M (2007) Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756–1762. doi: 10.1038/nprot.2007.247 CrossRefGoogle Scholar
  6. 6.
    Ostrom PH, Schall M, Gandhi H, Shen TL, Hauschka PV, Strahler JR, Gage DA (2000) New strategies for characterizing ancient proteins using matrix-assisted laser desorption ionization mass spectrometry. Geochim Cosmochim Acta 64:1043–1050. doi: 10.1016/S0016-7037(99)00381-6 CrossRefGoogle Scholar
  7. 7.
    Buckley M, Anderung C, Penkman K, Raney BJ, Gotherstrom A, Thomas-Oates J, Collins MJ (2008) Comparing the survival of osteocalcin and mtDNA in archaeological bone from four European sites. J Archaeol Sci 35:1756–1764. doi: 10.1016/j.jas.2007.11.022 CrossRefGoogle Scholar
  8. 8.
    Keyser C, Bouakaze C, Crubézy E, Nikolaev VG, Montagnon D, Reis T, Ludes B (2009) Ancient DNA provides new insights into the history of south Siberian Kurgan people. Hum Genet 126:395–410. doi: 10.1007/s00439-009-0683-0 CrossRefGoogle Scholar
  9. 9.
    Amory S, Huel R, Bilić A, Loreille O, Parsons TJ (2012) Automatable full demineralization DNA extraction procedure from degraded skeletal remains. Forensic Sci Int: Genet 6:398–406. doi: 10.1016/j.fsigen.2011.08.004 CrossRefGoogle Scholar
  10. 10.
    Orlando L, Ginolhac A, Zhang G et al (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78. doi: 10.1038/nature12323 CrossRefGoogle Scholar
  11. 11.
    Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. doi: 10.1146/annurev.genet.37.110801.143214 CrossRefGoogle Scholar
  12. 12.
    Campos PF, Craig OE, Turner-Walker G, Peacock E, Willerslev E, Gilbert MTP (2012) DNA in ancient bone—where is it located and how should we extract it? Ann Anat-Anat Anz 194:7–16. doi: 10.1016/j.aanat.2011.07.003 CrossRefGoogle Scholar
  13. 13.
    Adler CJ, Haak W, Donlon D, Cooper A (2011) Survival and recovery of DNA from ancient teeth and bones. J Archaeol Sci 38:956–964. doi: 10.1016/j.jas.2010.11.010 CrossRefGoogle Scholar
  14. 14.
    Higgins D, Austin JJ (2013) Teeth as a source of DNA for forensic identification of human remains: a review. Sci Justice 53:433–441. doi: 10.1016/j.scijus.2013.06.001 CrossRefGoogle Scholar
  15. 15.
    Gilbert MTP, Willerslev E, Hansen AJ, Barnes I, Rudbeck L, Lynnerup N, Cooper A (2003) Distribution patterns of postmortem damage in human mitochondrial DNA. Am J Hum Genet 72:32–47CrossRefGoogle Scholar
  16. 16.
    Rollin-Martinet S, Navrotsky A, Champion E, Grossin D, Drouet C (2013) Thermodynamic basis for evolution of apatite in calcified tissues. Am Mineral 98:2037–2045. doi: 10.2138/am.2013.4537 CrossRefGoogle Scholar
  17. 17.
    Eanes ED, Meyer JL (1977) The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calc Tis Res 23:259–269. doi: 10.1007/BF02012795 CrossRefGoogle Scholar
  18. 18.
    Rey C, Hina A, Tofighi A, Glimcher MJ (1995) Maturation of poorly crystalline apatites: chemical and structural aspects in vivo and in vitro. Cells Mat 5:345–356Google Scholar
  19. 19.
    Rey C, Lian J, Grynpas M, Shapiro F, Zylberberg L, Glimcher MJ (1989) Non-apatitic environments in bone mineral: FT-IR detection, biological properties and changes in several disease states. Connect Tissue Res 21:267–273CrossRefGoogle Scholar
  20. 20.
    Combes C, Rey C, Eichert D, Drouet C (2005) Formation and evolution of hydrated surface layers of apatites. Key Eng Mater 284:3–6Google Scholar
  21. 21.
    Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the v 3 PO4 domain. Calcif Tissue Int 49:383–388CrossRefGoogle Scholar
  22. 22.
    Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I. Investigations in the v 4 PO4 domain. Calcif Tissue Int 46:384–394CrossRefGoogle Scholar
  23. 23.
    Cazalbou S, Eichert D, Ranz X, Drouet C, Combes C, Harmand MF, Rey C (2005) Ion exchanges in apatites for biomedical application. J Mater Sci Mater Med 16:405–409. doi: 10.1007/s10856-005-6979-2 CrossRefGoogle Scholar
  24. 24.
    Errassifi F, Menbaoui A, Autefage H et al (2010) Adsorption on apatitic calcium phosphates: applications to drug delivery. In: Narayan R, McKittrick J (eds) Advances in bioceramics and biotechnologies. Amer Ceramic Soc, Westerville, pp 159–174Google Scholar
  25. 25.
    Ouizat S, Barroug A, Legrouri A, Rey C (1999) Adsorption of bovine serum albumin on poorly crystalline apatite: influence of maturation. Mater Res Bull 34:2279–2289. doi: 10.1016/S0025-5408(00)00167-7 CrossRefGoogle Scholar
  26. 26.
    Posner AS (1985) The structure of bone apatite surfaces. J Biomed Mater Res 19:241–250. doi: 10.1002/jbm.820190307 CrossRefGoogle Scholar
  27. 27.
    Drouet C, Carayon MT, Combes C, Rey C (2005) Exchange of biologically relevant ions on nanocrystalline apatites. Geochim Cosmochim Acta 69:A69–A69Google Scholar
  28. 28.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715. doi: 10.1038/362709a0 CrossRefGoogle Scholar
  29. 29.
    Grunenwald A, Keyser C, Sautereau A-M, Crubézy E, Ludes B, Drouet C (2014) Adsorption of DNA on biomimetic apatites: towards the understanding of the role of bone and tooth mineral on the preservation of ancient DNA. Appl Surf Sci 292:867–875. doi: 10.1016/j.apsusc.2013.12.063 CrossRefGoogle Scholar
  30. 30.
    Götherström A, Collins MJ, Angerbjörn A, Lidén K (2002) Bone preservation and DNA amplification. Archaeometry 44:395–404. doi: 10.1111/1475-4754.00072 CrossRefGoogle Scholar
  31. 31.
    Hagelberg E, Bell LS, Allen T, Boyde A, Jones SJ, Clegg JB (1991) Analysis of ancient bone DNA: techniques and applications [and discussion]. Philos Trans R Soc Lond Ser B Biol Sci 333:399–407CrossRefGoogle Scholar
  32. 32.
    Cazalbou S, Eichert D, Drouet C, Combes C, Rey C (2004) Minéralisations biologiques à base de phosphate de calcium. Comptes Rendus Palevol 3:563–572. doi: 10.1016/j.crpv.2004.07.003 CrossRefGoogle Scholar
  33. 33.
    Trueman CN, Palmer MR, Field J, Privat K, Ludgate N, Chavagnac V, Eberth DA, Cifelli R, Rogers RR (2008) Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. Comptes Rendus Palevol 7:145–158. doi: 10.1016/j.crpv.2008.02.006 CrossRefGoogle Scholar
  34. 34.
    Yi H, Balan E, Gervais C et al (2013) A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am Mineral 98:1066–1069. doi: 10.2138/am.2013.4445 CrossRefGoogle Scholar
  35. 35.
    Sosa C, Vispe E, Núñez C, Baeta M, Casalod Y, Bolea M, Hedges REM, Martinez-Jarreta B (2013) Association between ancient bone preservation and DNA yield: a multidisciplinary approach. Am J Phys Anthropol 151:102–109. doi: 10.1002/ajpa.22262 CrossRefGoogle Scholar
  36. 36.
    Vandecandelaere N, Rey C, Drouet C (2012) Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters. J Mater Sci Mater Med 23:2593–2606. doi: 10.1007/s10856-012-4719-y CrossRefGoogle Scholar
  37. 37.
    Mendisco F, Keyser C, Hollard C et al (2011) Application of the iPLEXTM Gold SNP genotyping method for the analysis of Amerindian ancient DNA samples: benefits for ancient population studies. Electrophoresis 32:386–393. doi: 10.1002/elps.201000483 CrossRefGoogle Scholar
  38. 38.
    Gee A, Deitz VR (1953) Determination of phosphate by differential spectrophotometry. Anal Chem 25:1320–1324. doi: 10.1021/ac60081a006 CrossRefGoogle Scholar
  39. 39.
    Charlot G (1963) L’analyse qualitative et les réactions en solution. Masson, 1963, Paris, FranceGoogle Scholar
  40. 40.
    Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276CrossRefGoogle Scholar
  41. 41.
    Vandecandelaère N (2012) Élaboration et caractérisation de biomatériaux osseux innovants à base d’apatites phospho-calciques dopées. INPTGoogle Scholar
  42. 42.
    Rowles S (1965) Studies on non-stoichiometric apatites. In: Stack MV, Fearnhead RW (eds) Tooth enamel: its composition, properties and fundamental structure. John Wright et Sons LTD, Bristol, Royaume-Uni, pp 23–25, 56–57Google Scholar
  43. 43.
    Person A, Bocherens H, Saliège J-F, Paris F, Zeitoun V, Gerard M (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J Archaeol Sci 22:211–221. doi: 10.1006/jasc.1995.0023 CrossRefGoogle Scholar
  44. 44.
    Thompson TJU, Islam M, Piduru K, Marcel A (2011) An investigation into the internal and external variables acting on crystallinity index using Fourier transform infrared spectroscopy on unaltered and burned bone. Palaeogeogr Palaeoclimatol Palaeoecol 299:168–174. doi: 10.1016/j.palaeo.2010.10.044 CrossRefGoogle Scholar
  45. 45.
    Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97. doi: 10.1016/j.chemgeo.2003.12.014 CrossRefGoogle Scholar
  46. 46.
    Lebon M, Müller K, Bellot-Gurlet L, et al. (2012) Application des micro-spectrométries infrarouge et Raman à l’étude des processus diagénétiques altérant les ossements paléolithiques. ArchéoSciences no. 35:179–190Google Scholar
  47. 47.
    McElderry J-DP, Zhu P, Mroue KH et al (2013) Crystallinity and compositional changes in carbonated apatites: evidence from 31P solid-state NMR, Raman, and AFM analysis. J Solid State Chem 206:192–198. doi: 10.1016/j.jssc.2013.08.011 CrossRefGoogle Scholar
  48. 48.
    Sader MS, Lewis K, Soares GA, LeGeros RZ (2013) Simultaneous incorporation of magnesium and carbonate in apatite: effect on physico-chemical properties. Mater Res 16:779–784. doi: 10.1590/S1516-14392013005000046 CrossRefGoogle Scholar
  49. 49.
    LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Monogr Oral Sci 15:1–201Google Scholar
  50. 50.
    Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc 38:107–114. doi: 10.1016/j.vibspec.2005.02.015 CrossRefGoogle Scholar
  51. 51.
    Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167. doi: 10.1016/j.palaeo.2008.03.038 CrossRefGoogle Scholar
  52. 52.
    Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445. doi: 10.1007/s00774-009-0146-7 CrossRefGoogle Scholar
  53. 53.
    Trueman CN (2013) Chemical taphonomy of biomineralized tissues. Palaeontology 56:475–486. doi: 10.1111/pala.12041 CrossRefGoogle Scholar
  54. 54.
    Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the v(4) PO43-vibration. Biochimica et Biophysica Acta (BBA)-General Subjects 1527:11–19Google Scholar
  55. 55.
    Smith CI, Chamberlain AT, Riley MS, Stringer C, Collins MJ (2003) The thermal history of human fossils and the likelihood of successful DNA amplification. J Hum Evol 45:203–217. doi: 10.1016/S0047-2484(03)00106-4 CrossRefGoogle Scholar
  56. 56.
    Legros R, Balmain N, Bonel G (1986) Structure and Composition of the Mineral Phase of Periosteal Bone. J Chem Res-S 8–9Google Scholar
  57. 57.
    Cazalbou S (2000) Échanges cationiques impliquant des apatites nanocristallines analogues au minéral osseux. Thèse de doctorat, Institut national polytechniqueGoogle Scholar
  58. 58.
    Drouet C, Carayon M-T, Combes C, Rey C (2008) Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: a preamble to the activation of bone repair materials. Mater Sci Eng C-Biomimetic Supramol Syst 28:1544–1550. doi: 10.1016/j.msec.2008.04.011 CrossRefGoogle Scholar
  59. 59.
    Lefevre R, Frank RM, Voegel JC (1975) The study of human dentine with secondary ion microscopy and electron diffraction. Calcif Tissue Res 19:251–261CrossRefGoogle Scholar
  60. 60.
    Keyser-Tracqui C, Crubezy E, Ludes B (2003) Nuclear and mitochondrial DNA analysis of a 2,000-year-old necropolis in the Egyin Gol Valley of Mongolia. Am J Hum Genet 73:247–260CrossRefGoogle Scholar
  61. 61.
    Mendisco F (2011) Apports de la paléogénétique à l’histoire du peuplement précolombien des Andes méridionales (Vème–XVème siècles). Université de Toulouse, Université Toulouse III-Paul SabatierGoogle Scholar
  62. 62.
    Scherrer P (1981) Estimation of the size and internal structure of colloidal particles by means of Rontgen rays. Nachr. Ges. Wiss., Gotengen 2:96–100Google Scholar
  63. 63.
    Paschalis EP et al. (1997) FTIR microspectroscopic analysis of normal human cortical and tribecular bone. Calcif. Tis. Int. 61(6):480–486Google Scholar
  64. 64.
    Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphtes. Elsevier Science BV, AmsterdamGoogle Scholar
  65. 65.
    Drouet C (2013) Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds. BioMed Res. Ins., p. 490946. Doi: 10.1155/2013/490946

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Grunenwald
    • 1
    • 2
  • C. Keyser
    • 2
  • A. M. Sautereau
    • 1
  • E. Crubézy
    • 3
  • B. Ludes
    • 4
  • C. Drouet
    • 1
  1. 1.CIRIMAT Carnot Institute  –  Phosphates, Pharmacotechnics, BiomaterialsUniversity of Toulouse, CNRS/INPT/UPS, ENSIACETToulouse Cedex 4France
  2. 2.Institute of Legal Medicine, AMIS Laboratory, CNRS UMR 5288University of StrasbourgStrasbourg CedexFrance
  3. 3.Molecular Anthropology and Image Synthesis Laboratory (AMIS), CNRS UMR 5288University of ToulouseToulouseFrance
  4. 4.Institute of Legal Medicine, Paris Descartes Medicine FacultyParis Descartes UniversityParisFrance

Personalised recommendations