Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 17, pp 4233–4242 | Cite as

Comprehensive two-dimensional liquid chromatography coupled to the ABTS radical scavenging assay: a powerful method for the analysis of phenolic antioxidants

  • Kathithileni M. Kalili
  • Seppe De Smet
  • Tim van Hoeylandt
  • Frédéric Lynen
  • André de VilliersEmail author
Research Paper

Abstract

The on-line combination of comprehensive two-dimensional liquid chromatography (LC × LC) with the 2,2′-azino-bis(3-ethylbenzothiazoline)-6 sulphonic acid (ABTS) radical scavenging assay was investigated as a powerful method to determine the free radical scavenging activities of individual phenolics in natural products. The combination of hydrophilic interaction chromatography (HILIC) separation according to polarity and reversed-phase liquid chromatography (RP-LC) separation according to hydrophobicity is shown to provide much higher resolving power than one-dimensional separations, which, combined with on-line ABTS detection, allows the detailed characterisation of antioxidants in complex samples. Careful optimisation of the ABTS reaction conditions was required to maintain the chromatographic separation in the antioxidant detection process. Both on-line and off-line HILIC × RP-LC–ABTS methods were developed, with the former offering higher throughput and the latter higher resolution. Even for the fast analyses used in the second dimension of on-line HILIC × RP-LC, good performance for the ABTS assay was obtained. The combination of LC × LC separation with an on-line radical scavenging assay increases the likelihood of identifying individual radical scavenging species compared to conventional LC–ABTS assays. The applicability of the approach was demonstrated for cocoa, red grape seed and green tea phenolics.

Figure

On-line HILIC×RP-LC–ABTS analysis of cocoa proanthocyanidins

Keywords

Antioxidant activity ABTS Comprehensive two-dimensional liquid chromatography (LC × LC) Natural products Phenolic compounds Radical scavenging assay 

Notes

Acknowledgments

KMK and AdV gratefully acknowledge Stellenbosch University, Sasol and the National Research Foundation (NRF, Grant 70995 to AdV) for funding. SDS and TVH gratefully acknowledge the Agency for Innovation by Science and Technology in Flanders (IWT) for financial support. Dalene de Beer is thanked for advice on the antioxidant assays and Edmund Luckay (IWBT) for the donation of the grape sample.

References

  1. 1.
    Kusznierewicz B, Piasek A, Bartoszek A, Namiesnik J (2011) Phytochem Anal 22:392–402CrossRefGoogle Scholar
  2. 2.
    Szajdek A, Borowska EJ (2008) Plant Foods Hum Nutr 63:147–156CrossRefGoogle Scholar
  3. 3.
    Iriti M, Faoro F (2009) In: Watson RR (ed) Complementary and alternative therapies and the aging population: an evidence-based approach. Elsevier Inc., San DiegoGoogle Scholar
  4. 4.
    Shahidi F, Wanasundara PKJPD (1992) Crit Rev Food Sci Nutr 32:67–103CrossRefGoogle Scholar
  5. 5.
    Koşar M, Dorman HJD, Başer KHC, Hiltunen R (2004) J Agric Food Chem 52:5004–5010CrossRefGoogle Scholar
  6. 6.
    Dudonné AS, Vitrac X, Coutière P, Woillez M, Mérillon J-M (2009) J Agric Food Chem 57:1768–1774CrossRefGoogle Scholar
  7. 7.
    Joubert E, Manley M, Botha M (2008) Phytochem Anal 19:169–178CrossRefGoogle Scholar
  8. 8.
    Spranger I, Sun B, Mateus AM, de Freitas V, Ricardo-da-Silva JM (2008) Food Chem 108:519–532CrossRefGoogle Scholar
  9. 9.
    Huang D, Ou B, Prior RL (2005) J Agric Food Chem 53:1841–1856CrossRefGoogle Scholar
  10. 10.
    Magalhaes LM, Segundo MA, Reis S, Lima JLFC (2008) Anal Chim Acta 613:1–19CrossRefGoogle Scholar
  11. 11.
    Karadag A, Ozcelik B, Saner S (2009) Food Anal Meth 2:41–60CrossRefGoogle Scholar
  12. 12.
    Moon J-K, Shibamoto T (2009) J Agric Food Chem 57:1655–1666CrossRefGoogle Scholar
  13. 13.
    Laguerre M, Decker EA, Lecomte J, Villeneuve P (2010) Curr Opin Clin Nutr Metab Care 13:518–525CrossRefGoogle Scholar
  14. 14.
    Gülçin I (2012) Arch Toxicol 86:345–391CrossRefGoogle Scholar
  15. 15.
    Niederländer HAG, van Beek TA, Bartasiute A, Koleva II (2008) J Chromatogr A 1210:121–134CrossRefGoogle Scholar
  16. 16.
    Malherbe CJ, de Beer D, Joubert E (2012) Int J Mol Sci 13:3101–3133CrossRefGoogle Scholar
  17. 17.
    Re R, Pellegrini N, Proteggente A, Apnnal A, Yang M, Rice-Evans C (1999) Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  18. 18.
    Koleva II, Niederländer HAG, van Beek TA (2001) Anal Chem 73:3373–3381CrossRefGoogle Scholar
  19. 19.
    Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK (2011) J Food Comp Anal 24:1043–1048CrossRefGoogle Scholar
  20. 20.
    Martysiak-Lrowska D, Wenta W (2012) Acta Sci Pol Technol Aliment 11:83–89Google Scholar
  21. 21.
    Li F, Zhang L-D, Li B-C, Yang J, Yu H, Wan J-B, Wang Y-T, Li P (2012) Free Radic Res 46:286–294CrossRefGoogle Scholar
  22. 22.
    Bushey MM, Jorgenson JW (1990) Anal Chem 62:161–167CrossRefGoogle Scholar
  23. 23.
    Davis JM, Giddings JC (1985) Anal Chem 57:2168–2177CrossRefGoogle Scholar
  24. 24.
    Davis JM, Giddings JC (1985) Anal Chem 57:2178–2187CrossRefGoogle Scholar
  25. 25.
    Giddings JC (1990) In: Cortes HJ (ed) Multidimensional chromatography: techniques and applications. Marcel Dekker, New YorkGoogle Scholar
  26. 26.
    Kalili KM, de Villiers A (2009) J Chromatogr A 1216:6274–6284CrossRefGoogle Scholar
  27. 27.
    Kalili KM, de Villiers A (2010) J Sep Sci 33:853–863CrossRefGoogle Scholar
  28. 28.
    Beelders T, Kalili KM, Joubert E, de Beer D, de Villiers A (2012) J Sep Sci 35:1808–1820CrossRefGoogle Scholar
  29. 29.
    Kalili KM, Vestner J, Stander MA, de Villiers A (2013) Anal Chem 85:9107–9115CrossRefGoogle Scholar
  30. 30.
    Kalili KM, de Villiers A (2013) J Chromatogr A 1289:58–68CrossRefGoogle Scholar
  31. 31.
    Kalili KM, de Villiers A (2013) J Chromatogr A 1289:69–79CrossRefGoogle Scholar
  32. 32.
    Kalili KM, Cabooter D, Desmet G, de Villiers A (2012) J Chromatogr A 1236:63–76CrossRefGoogle Scholar
  33. 33.
    Kuhlmann O, Krauss G-J (1997) J Pharm Biomed Anal 16:553–559CrossRefGoogle Scholar
  34. 34.
    Kucera P, Umagat H (1983) J Chromatogr 255:563–579CrossRefGoogle Scholar
  35. 35.
    Lestremau F, Wu D, Szücs R (2010) J Chromatogr A 1217:4925–4933CrossRefGoogle Scholar
  36. 36.
    Giddings JC (1984) Anal Chem 56:1258A–1270ACrossRefGoogle Scholar
  37. 37.
    Pannala AS, Rice-Evans C (2001) Methods Enzymol 335:266–272CrossRefGoogle Scholar
  38. 38.
    Kivilompolo M, Hyötyläinen T (2007) J Chromatogr A 1145:155–164CrossRefGoogle Scholar
  39. 39.
    Kivilompolo M, Oburka V, Hyötyläinen T (2008) Anal Bioanal Chem 391:373–380CrossRefGoogle Scholar
  40. 40.
    Dugo P, Cacciola F, Donato P, Airado-Rodríguez D, Herrero M, Mondello L (2009) J Chromatogr A 1216:7483–7487CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kathithileni M. Kalili
    • 1
  • Seppe De Smet
    • 2
  • Tim van Hoeylandt
    • 2
  • Frédéric Lynen
    • 2
  • André de Villiers
    • 1
    Email author
  1. 1.Department of Chemistry and Polymer ScienceStellenbosch UniversityMatielandSouth Africa
  2. 2.Separation Science Group, Department of Organic ChemistryGhent UniversityGhentBelgium

Personalised recommendations