Analytical and Bioanalytical Chemistry

, Volume 406, Issue 17, pp 4273–4285 | Cite as

Highly sensitive determination of 68 psychoactive pharmaceuticals, illicit drugs, and related human metabolites in wastewater by liquid chromatography–tandem mass spectrometry

  • Viola L. Borova
  • Niki C. Maragou
  • Pablo Gago-Ferrero
  • Constantinos Pistos
  • Νikolaos S. ΤhomaidisEmail author
Research Paper


The present work describes the development and validation of a highly sensitive analytical method for the simultaneous determination of 68 compounds, including illicit drugs (opiates, opioids, cocaine compounds, amphetamines, and hallucinogens), psychiatric drugs (benzodiazepines, barbiturates, anesthetics, antiepileptics, antipsychotics, antidepressants, and sympathomimetics), and selected human metabolites in influent and effluent wastewater (IWW and EWW) by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The method involves a pre-concentration and cleanup step, carried out by solid-phase extraction (SPE) using the adsorbent Strata-XC, followed by the instrumental analysis performed by LC–MS/MS, using a Kinetex pentafluorophenyl (PFP) reversed-phase fused-core column and electrospray ionization (ESI) in both positive and negative modes. A systematic optimization of mobile phases was performed to cope with the wide range of physicochemical properties of the analytes. The PFP column was also compared with two reversed-phase columns: fused-core C18 and XB-C18 (with a cross-butyl C18 ligand). SPE optimization and critical aspects associated with the trace level determination of the target compounds (e.g., matrix effects) have been also considered and discussed. Fragmentation patterns for all the classes were proposed. The validated method provides absolute recoveries between 75 and 120 % for most compounds in IWW and EWW. Low method limits of detection were achieved (between 0.04 and 10.0 ng/L for 87 % of the compounds), allowing a reliable and accurate quantification of the analytes at trace level. The method was successfully applied to the analysis of these compounds in five wastewater treatment plants in Santorini, a touristic island of the Aegean Sea, Greece. Thirty-two out of 68 compounds were detected in all IWW samples in the range between 0.6 ng/L (for nordiazepam) and 6,822 ng/L (for carbamazepine) and 22 out of 68 in all EWW samples, with values between 0.4 ng/L (for 9-OH risperidone) and 2,200 ng/L (for carbamazepine). The novel methodology described herein maximizes the information on the environmental analysis of these substances and also provides a first profile of 68 drugs in a Greek touristic area.


Illicit drugs Psychiatric drugs Wastewater LC–MS/MS SPE 



This project was implemented under the Operational Program “Education and Lifelong Learning” and funded by the European Union (European Social Fund) and National Resources–ARISTEIA 624.

Supplementary material

216_2014_7819_MOESM1_ESM.pdf (4.3 mb)
ESM 1 (PDF 4.31 mb)


  1. 1.
    Aldrich MR (2012) Antique cannabis book, medical cannabis: a short graphical history, [Accessed on 12 Oct 2013]
  2. 2.
    ΕMCDDA (European Monitoring Centre for Drugs and Drug Addiction) (2012) Annual report: the state of the drug problem in Europe. [Accessed on 12 Jan 2014]
  3. 3.
    Kyriopoulos J, Tsiantou V (2010) Arch Hellen Med 27:834–840Google Scholar
  4. 4.
    Stuckler D, Basu S, Suhrcke M, Coutts A, McKee M (2009) Lancet 374:315–323CrossRefGoogle Scholar
  5. 5.
    Daughton CG (2011) In: Castiglioni S, Zuccato E, Fanelli R (eds) Illicit drugs in the environment: occurrence, analysis and fate using mass spectrometry. Canada, WileyGoogle Scholar
  6. 6.
    Van Nuijs ALN, Mougel JF, Taracomnicu I, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2011) J Environ Monitor 13:1008–1016CrossRefGoogle Scholar
  7. 7.
    Pal R, Megharaj M, Kirkbride KP, Naidu R (2013) Sci Total Environ 463–464:1079–1092CrossRefGoogle Scholar
  8. 8.
    Jones-Lepp TL, Alvarez DA, Petty JD, Huckins JN (2004) Arch Environ Contam Toxicol 47:427–439CrossRefGoogle Scholar
  9. 9.
    Boles TH, Wells MJM (2010) J Chromatogr A 1217:2561–2568CrossRefGoogle Scholar
  10. 10.
    Zuccato E, Castiglioni S (2009) Phil Trans R Soc A 367:3965–3978CrossRefGoogle Scholar
  11. 11.
    Zuccato E, Chiabrando C, Castiglioni S, Calamari D, Bagnati R, Schiarea S, Fanelli R (2005) Environ Health 4:14CrossRefGoogle Scholar
  12. 12.
    Zuccato E, Castiglioni S, Bagnati R, Chiabrando C, Grassi P, Fanelli R (2008) Water Res 42:961–968CrossRefGoogle Scholar
  13. 13.
    Daughton CG, Ruhoy IS (2009) Environ Toxicol Chem 28:2495–2521CrossRefGoogle Scholar
  14. 14.
    Moore TJ, Glenmullen J, Furberg CD (2010) PLoS One 5:e15337CrossRefGoogle Scholar
  15. 15.
    Binelli A, Pedriali A, Riva C, Parolini M (2012) Chemosphere 86:906–911CrossRefGoogle Scholar
  16. 16.
    Hummel D, Löffler D, Fink G, Ternes TA (2006) Environ Sci Technol 40:7321–7328CrossRefGoogle Scholar
  17. 17.
    Postigo C, López de Alda MJ, Barceló D (2008) Anal Chem 80:3123–3314CrossRefGoogle Scholar
  18. 18.
    Postigo C, López de Alda MJ, Barceló D (2010) Environ Int 36:75–84Google Scholar
  19. 19.
    Postigo C, López de Alda MJ, Barceló D (2011) Environ Int 37:49–55Google Scholar
  20. 20.
    Huerta-Fontela M, Galceran MT, Ventura F (2008) Environ Technol 42:6809–6816CrossRefGoogle Scholar
  21. 21.
    Huerta-Fontela M, Galceran MT, Ventura F (2007) Anal Chem 79:3821–3829CrossRefGoogle Scholar
  22. 22.
    Gonzales Alonso S, Catala M, Maroto RR, Rodrigez Gill JL, De Miguel AG, Valcarcel Y (2010) Environ Int 36:195–201CrossRefGoogle Scholar
  23. 23.
    Vazquez-Roing P, Andreu V, Blasco C, Pico Y (2010) Anal Bioanal Chem 397:2851–2864CrossRefGoogle Scholar
  24. 24.
    González-Mariño I, Quintana JB, Rodriguez I, Cela R (2010) J Chromatogr A 1217:1748–1760CrossRefGoogle Scholar
  25. 25.
    Bijlsma L, Sancho JV, Pitarch E, Ibáñez M, Hernández F (2009) J Chromatogr A 1216:3078–3089CrossRefGoogle Scholar
  26. 26.
    Hernández F, Bijlsma L, Sancho VJ, Diaz R, Ibáñez M (2011) Anal Chim Acta 684:96–106CrossRefGoogle Scholar
  27. 27.
    Boleda MR, Galceran MT, Ventura F (2007) J Chromatogr A 1175:38–48CrossRefGoogle Scholar
  28. 28.
    Boleda MR, Galceran MT, Ventura F (2009) Water Res 43:1126–1136CrossRefGoogle Scholar
  29. 29.
    Bueno MJM, Uclés S, Hernando MD, Fernández-Alba AR (2011) Talanta 85:157–166CrossRefGoogle Scholar
  30. 30.
    Bisceglia KJ, Roberts AL, Schantz MM, Lippa KL (2010) Anal Bioanal Chem 398:2701–2712CrossRefGoogle Scholar
  31. 31.
    Chiaia AC, Banta-Green C, Field J (2008) Environ Sci Technol 42:8841–8848CrossRefGoogle Scholar
  32. 32.
    Metcalfe C, Tindale K, Li H, Rodayan A, Yargeau V (2010) Environ Pollut 158:3179–3185CrossRefGoogle Scholar
  33. 33.
    Karolak S, Nefau T, Bailly E, Solgadi A, Levi Y (2010) Forensic Sci Int 200:153–160CrossRefGoogle Scholar
  34. 34.
    Bones J, Kevin VT, Brett P (2007) J Environ Monit 9:701–707CrossRefGoogle Scholar
  35. 35.
    Van Nuijs ALN, Pecceu B, Theunis L, Dubois N, Charlier C, Jorens PG, Bervoets L, Blust R, Meulemans H, Neels H, Covaci A (2009) Addiction 104:734–742CrossRefGoogle Scholar
  36. 36.
    Van Nuijs ALN, Tarcomnicu I, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2009) Anal Bioanal Chem 395:819–828CrossRefGoogle Scholar
  37. 37.
    Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Water Res 42:3498–3518CrossRefGoogle Scholar
  38. 38.
    Bakera DR, Kasprzyk-Hordern B (2011) J Chromatogr A 1218:1620–1631CrossRefGoogle Scholar
  39. 39.
    Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2009) Environ Pol 157:1773–1777CrossRefGoogle Scholar
  40. 40.
    Bijlsma L, Emke E, Hernández F, De Voogt P (2012) Chemosphere 89:1399–1406CrossRefGoogle Scholar
  41. 41.
    Zuccato E, Castiglioni S, Tettamanti M, Olandese R, Bagnati R, Melis M, Fanelli R (2011) Drug Alcohol Depend 118:464–469CrossRefGoogle Scholar
  42. 42.
    Berset JD, Brenneisen R, Mathieu C (2010) Chemosphere 81:859–866CrossRefGoogle Scholar
  43. 43.
    Irvine RJ, Kostakis C, Felgate PD, Jaehne EJ, Chen C, White JM (2011) Forensic Sci Int 210:69–73CrossRefGoogle Scholar
  44. 44.
    Terzic S, Senta I, Ahel M (2010) Environ Pollut 158:2686–2693CrossRefGoogle Scholar
  45. 45.
    Chemicalize, [Accessed on 12 Jan 2014]
  46. 46.
    Peel MC, Finlayson BL, McMahon TA (2007) Earth Syst Sci Discuss 4:439–473CrossRefGoogle Scholar
  47. 47.
    van Nuijs ALN, Abdellati K, Bervoets L, Blust R, Jorens PG, Neels H, Covaci A (2012) J Hazard Mater 239–240:19–23CrossRefGoogle Scholar
  48. 48.
    Baker DR, Kasprzyk-Hordern B (2011) J Chromatogr A 1218:8036–8059CrossRefGoogle Scholar
  49. 49.
    Chemspider, [Accessed on 12 Jan 2013]
  50. 50.
    Huq S, Dixon A, Kelly K, Kallury KMR (2005) J Chromatogr A 1073:355–361CrossRefGoogle Scholar
  51. 51.
    González-Mariño I, Quintana JB, Rodríguez I, Gonzáez-Díez M, Cela R (2012) Anal Chem 84:1708–1717CrossRefGoogle Scholar
  52. 52.
    Kot-Wasik A, Debska J, Namiesnik J (2007) Trends in Anal Chem 26:557–568CrossRefGoogle Scholar
  53. 53.
    Dams R, Huestis MA, Lambert WE, Murphy CM (2003) J Am Soc Mass Spectrom 14:1290–1294CrossRefGoogle Scholar
  54. 54.
    Lajeunesse A, Gagnon C, Sauve S (2008) Anal Chem 80:5325–5333CrossRefGoogle Scholar
  55. 55.
    Jelic A, Gros M, Ginebreda A, Cespedes-Sánchez R, Ventura F, Petrovic M, Barcelo D (2011) Water Res 45:1165–1176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Viola L. Borova
    • 1
  • Niki C. Maragou
    • 1
  • Pablo Gago-Ferrero
    • 1
  • Constantinos Pistos
    • 2
  • Νikolaos S. Τhomaidis
    • 1
    Email author
  1. 1.Laboratory of Analytical Chemistry, Department of ChemistryNational and Kapodistrian University of AthensAthensGreece
  2. 2.Laboratory of Forensic Medicine and Toxicology, School of MedicineNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations