Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 15, pp 3735–3742 | Cite as

Detection of follicular transport of lidocaine and metabolism in adipose tissue in pig ear skin by DESI mass spectrometry imaging

  • Janina D’Alvise
  • Rasmus Mortensen
  • Steen H. Hansen
  • Christian JanfeltEmail author
Research Paper

Abstract

Desorption electrospray ionization (DESI) mass spectrometry imaging is demonstrated as a detection technique for penetration experiments of drugs in skin. Lidocaine ointment was used as the model compound in ex vivo experiments with whole pig ears as the skin model. Follicular transport of lidocaine into the deeper skin layers is demonstrated for the first time. Furthermore, metabolism of lidocaine to 3-OH-lidocaine was observed in subcutaneous tissue as well as in lobules of white adipose tissue surrounding the hair follicles. These results suggest that it is advantageous to use full thickness skin, including subcutaneous tissue, for skin metabolism studies.

Keywords

DESI Lidocaine Mass spectrometry imaging Pig ear skin Drugs Topical 

Notes

Acknowledgments

The authors thank Kristian Moller (LEO Pharma A/S) for useful discussions on skin sections. Furthermore, we thank André Eriksson and Karsten Petersson for providing the pig ears and Louise Bastholm-Jensen for an introduction to penetration experiments (all from LEO Pharma A/S). Support from the Carlsberg Foundation, The Danish Council for Independent Research|Natural Sciences and LEO Pharma A/S is gratefully acknowledged.

References

  1. 1.
    EU (2003) Directive 2003/15/EC of the European Parliament and the Council of 27 February 2003 amending Council Directive 76/768/EEC on the Approximation of the Laws of the Members States Relating to Cosmetic Products. Off J Eur UnionGoogle Scholar
  2. 2.
    Karan A, Alikhan A, Maibach HI (2009) Toxicologic implications of cutaneous barriers: a molecular, cellular, and anatomical overview. J Appl Toxicol 29:551–559CrossRefGoogle Scholar
  3. 3.
    Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J (2004) Variations of hair follicle size and distribution in different body sites. J Investig Dermatol 122:14–19CrossRefGoogle Scholar
  4. 4.
    Otberg N, Patzelt A, Rasulev U, Hagemeister T, Linscheid M, Sinkgraven R, Sterry W, Lademann J (2008) The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol 65:488–492CrossRefGoogle Scholar
  5. 5.
    Trauer S, Patzelt A, Otberg N, Knorr F, Rozycki C, Balizs G, Buttemeyer R, Linscheid M, Liebsch M, Lademann J (2009) Permeation of topically applied caffeine through human skin—a comparison of in vivo and in vitro data. Br J Clin Pharmacol 68:181–186CrossRefGoogle Scholar
  6. 6.
    Vogt A, Mandt N, Lademann J, Schaefer H, Blume-Peytavi U (2005) Follicular targeting—a promising tool in selective dermatotherapy. J Investig Dermatol Symp Proc 10:252–255CrossRefGoogle Scholar
  7. 7.
    Vogt A, Mahe B, Costagliola D, Bonduelle O, Hadam S, Schaefer G, Schaefer H, Katlama C, Sterry W, Autran B, Blume-Peytavi U, Combadiere B (2008) Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol 180:1482–1489CrossRefGoogle Scholar
  8. 8.
    Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, Sterry W (2006) Hair follicles—a long-term reservoir for drug delivery. Skin Pharmacol Physiol 19:232–236CrossRefGoogle Scholar
  9. 9.
    Bartosova L, Bajgar J (2012) Transdermal drug delivery in vitro using diffusion cells. Curr Med Chem 19:4671–4677CrossRefGoogle Scholar
  10. 10.
    Patzelt A, Richter H, Buettemeyer R, Huber HJR, Blame-Peytavi U, Sterry W, Lademann J (2008) Differential stripping demonstrates a significant reduction of the hair follicle reservoir in vitro compared to in vivo. Eur J Pharm Biopharm 70:234–238CrossRefGoogle Scholar
  11. 11.
    Simon GA, Maibach HI (2000) The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations—an overview. Skin Pharmacol Appl Ski Physiol 13:229–234CrossRefGoogle Scholar
  12. 12.
    Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N, Sterry W, Lademann J (2007) Porcine ear skin: an in vitro model for human skin. Skin Res Technol 13:19–24CrossRefGoogle Scholar
  13. 13.
    Steinstrasser I, Merkle HP (1995) Dermal metabolism of topically applied drugs: pathways and models reconsidered. Pharm Acta Helv 70:3–24CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Grice JE, Wang GJ, Roberts MS (2009) Cutaneous metabolism in transdermal drug delivery. Curr Drug Metab 10:227–235CrossRefGoogle Scholar
  15. 15.
    Ahlstrom LA, Cross SE, Mills PC (2007) The effects of freezing skin on transdermal drug penetration kinetics. J Vet Pharmacol Ther 30:456–463CrossRefGoogle Scholar
  16. 16.
    Jacobi U, Toll R, Sterry W, Lademann J (2005) Do follicles play a role as penetration pathways in in vitro studies on porcine skin? An optical study. Laser Phys 15:1594–1598Google Scholar
  17. 17.
    Franzen L, Mathes C, Hansen S, Windbergs M (2013) Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy. J Biomed Opt 18:061210–061210CrossRefGoogle Scholar
  18. 18.
    Stumpf WE, Hayakawa N, Bidmon HJ (2008) Skin research and drug localization with receptor microscopic autoradiography. Exp Dermatol 17:133–138CrossRefGoogle Scholar
  19. 19.
    Prideaux B, Stoeckli M (2012) Mass spectrometry imaging for drug distribution studies. J Proteomics 75:4999–5013CrossRefGoogle Scholar
  20. 20.
    Angel PM, Caprioli RM (2013) Matrix-assisted laser desorption ionization imaging mass spectrometry: in situ molecular mapping. Biochemistry 52:3818–3828CrossRefGoogle Scholar
  21. 21.
    Wiseman JM, Ifa DR, Song Q, Cooks RG (2006) Tissue imaging at atmospheric pressure using desorption electrospray ionization (DESI) mass spectrometry. Angew Chem Int Ed Engl 45:7188–7192CrossRefGoogle Scholar
  22. 22.
    Enthaler B, Pruns JK, Wessel S, Rapp C, Fischer M, Wittern KP (2012) Improved sample preparation for MALDI-MSI of endogenous compounds in skin tissue sections and mapping of exogenous active compounds subsequent to ex-vivo skin penetration. Anal Bioanal Chem 402:1159–1167CrossRefGoogle Scholar
  23. 23.
    Janfelt C, Wellner N, Hansen HS, Hansen SH (2013) Displaced dual-mode imaging with desorption electrospray ionization for simultaneous mass spectrometry imaging in both polarities and with several scan modes. J Mass Spectrom 48:361–366CrossRefGoogle Scholar
  24. 24.
    Kertesz V, Van Berkel GJ, Vavrek M, Koeplinger KA, Schneider BB, Covey TR (2008) Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal Chem 80:5168–5177CrossRefGoogle Scholar
  25. 25.
    Katona M, Denes J, Skoumal R, Toth M, Takats Z (2011) Intact skin analysis by desorption electrospray ionization mass spectrometry. Analyst 136:835–840CrossRefGoogle Scholar
  26. 26.
    Salter TL, Green FM, Faruqui N, Gilmore IS (2011) Analysis of personal care products on model skin surfaces using DESI and PADI ambient mass spectrometry. Analyst 136:3274–3280CrossRefGoogle Scholar
  27. 27.
    Thunig J, Hansen SH, Janfelt C (2011) Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Anal Chem 83:3256–3259CrossRefGoogle Scholar
  28. 28.
    Thomas J, Meffin P (1972) Aromatic hydroxylation of lidocaine and mepivacaine in rats and humans. J Med Chem 15:1046CrossRefGoogle Scholar
  29. 29.
    Campbell DI, Ferreira CR, Eberlin LS, Cooks RG (2012) Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization. Anal Bioanal Chem 404:389–398CrossRefGoogle Scholar
  30. 30.
    Franzen L, Windbergs M, Hansen S (2012) Assessment of near-infrared densitometry for in situ determination of the total stratum corneum thickness on pig skin: influence of storage time. Skin Pharmacol Physiol 25:249–256CrossRefGoogle Scholar
  31. 31.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556CrossRefGoogle Scholar
  32. 32.
    Ellero S, Chakhtoura G, Barreau C, Langouet S, Benelli C, Penicaud L, Beaune P, de Waziers I (2010) Xenobiotic-metabolizing cytochromes P450 in human white adipose tissue: expression and induction. Drug Metab Dispos 38:679–686CrossRefGoogle Scholar
  33. 33.
    Chik Z, Tucker AT, Shiel JI, Collier DJ, Perrett D, Lee TD, Johnston A (2010) Comparative pharmacokinetic assessments of topical drugs: evaluation by dermatopharmacokinetics, microdialysis, and systemic measurement. J Investig Dermatol 130:2828–2830CrossRefGoogle Scholar
  34. 34.
    Singh P, Roberts MS (1994) Dermal and underlying tissue pharmacokinetics of lidocaine after topical application. J Pharm Sci 83:774–782CrossRefGoogle Scholar
  35. 35.
    Schmidt B, Horsley V (2012) Unravelling hair follicle-adipocyte communication. Exp Dermatol 21:827–830CrossRefGoogle Scholar
  36. 36.
    Hausman GJ, Martin RJ (1982) The development of adipocytes located around hair follicles in the fetal pig. J Anim Sci 54:1286–1296Google Scholar
  37. 37.
    Sperling LC (1991) Hair anatomy for the clinician. J Am Acad Dermatol 25:1–17CrossRefGoogle Scholar
  38. 38.
    Keenaghan JB, Boyes RN (1972) The tissue distribution, metabolism and excretion of lidocaine in rats, guinea pigs, dogs and man. J Pharmacol Exp Ther 180:454–463Google Scholar
  39. 39.
    Ha RH, Follath F (2004) Metabolism of antiarrhythmics. Curr Drug Metab 5:543–571CrossRefGoogle Scholar
  40. 40.
    Hermansson J, Glaumann H, Karlen B, Vonbahr C (1980) Metabolism of lidocaine in human liver in vitro. Acta Pharmacol Toxicol 47:49–52CrossRefGoogle Scholar
  41. 41.
    Coutts RT, Torokboth GA, Chu LV, Tam YK, Pasutto FM (1987) In vivo metabolism of lidocaine in the rat—isolation of urinary metabolites as pentafluorobenzoyl derivatives and their identification by combined gas chromatography-mass spectrometry. J Chromatogr-Biomed Appl 421:267–280CrossRefGoogle Scholar
  42. 42.
    Masubuchi Y, Umeda S, Igarashi S, Fujita S, Narimatsu S, Suzuki T (1993) Participation of the CYP2D subfamily in lidocaine 3-hydroxylation and formation of a reactive metabolite covalently bound to liver microsomal protein in rats. Biochem Pharmacol 46:1867–1869CrossRefGoogle Scholar
  43. 43.
    Sielaff TD, Hu MY, Rao S, Groehler K, Olson D, Mann HJ, Remmel RP, Shatford RAD, Amiot B, Hu WS, Cerra FB (1995) A technique for porcine hepatocyte harvest and description of differentiated metabolic functions in static culture. Transplantation 59:1459–1463CrossRefGoogle Scholar
  44. 44.
    Oni G, Brown S, Burrus C, Grant L, Watkins J, Kenkel M, Barton F, Kenkel J (2010) Effect of 4 % topical lidocaine applied to the face on the serum levels of lidocaine and its metabolite, monoethylglycinexylidide. Aesthet Surg J 30:853–858CrossRefGoogle Scholar
  45. 45.
    McCleskey PE, Patel SM, Mansalis KA, Elam AL, Kinsley TR (2013) Serum lidocaine levels and cutaneous side effects after application of 23 % lidocaine 7 % tetracaine ointment to the face. Dermatol Surg 39:82–91CrossRefGoogle Scholar
  46. 46.
    Rolsted K, Benfeldt E, Kissmeyer AM, Rist GM, Hansen SH (2009) Cutaneous in vivo metabolism of topical lidocaine formulation in human skin. Skin Pharmacol Physiol 22:124–127CrossRefGoogle Scholar
  47. 47.
    Nicoli S, Santi P (2007) Suitability of excised rabbit ear skin—fresh and frozen—for evaluating transdermal permeation of estradiol. Drug Deliv 14:195–199CrossRefGoogle Scholar
  48. 48.
    Jacques C, Perdu E, Duplan H, Jamin EL, Canlet C, Debrauwer L, Cravedi JP, Mavon A, Zalko D (2010) Disposition and biotransformation of 14C-benzo(a)pyrene in a pig ear skin model: ex vivo and in vitro approaches. Toxicol Lett 199:22–33CrossRefGoogle Scholar
  49. 49.
    Harkins JD, Mundy GD, Woods WE, Lehner A, Karpiesiuk W, Rees WA, Dirikolu L, Bass S, Carter WG, Boyles J, Tobin T (1998) Lidocaine in the horse: its pharmacological effects and their relationship to analytical findings. J Vet Pharmacol Ther 21:462–476CrossRefGoogle Scholar
  50. 50.
    Bellas E, Seiberg M, Garlick J, Kaplan DL (2012) In vitro 3D full-thickness skin-equivalent tissue model using silk and collagen biomaterials. Macromol Biosci 12:1627–1636CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Janina D’Alvise
    • 1
  • Rasmus Mortensen
    • 2
  • Steen H. Hansen
    • 1
  • Christian Janfelt
    • 1
    Email author
  1. 1.Department of PharmacyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Pharmaceutical Technologies, LEO Pharma A/SBallerupDenmark

Personalised recommendations