Analytical and Bioanalytical Chemistry

, Volume 406, Issue 15, pp 3621–3636 | Cite as

Metabolism of JWH-015, JWH-098, JWH-251, and JWH-307 in silico and in vitro: a pilot study for the detection of unknown synthetic cannabinoids metabolites

  • Sabina Strano-Rossi
  • Luca Anzillotti
  • Stefania Dragoni
  • Roberto Maria Pellegrino
  • Laura Goracci
  • Vincenzo Lorenzo Pascali
  • Gabriele Cruciani
Research Paper
Part of the following topical collections:
  1. Forensic Toxicology

Abstract

This pilot study was performed to study the main metabolic reactions of four synthetic cannabinoids: JWH-015, JWH-098, JWH-251, and JWH-307 in order to setup a screening method for the detection of main metabolites in biological fluids. In silico prediction of main metabolic reactions was performed using MetaSite software. To evaluate the agreement between software prediction and experimental reactions, we performed in vitro experiments on the same JWHs using rat liver slices. The obtained samples were analyzed by liquid chromatography-quadrupole time-of-flight and the identification of metabolites was executed using Mass-MetaSite software that automatically assigned the metabolite structures to the peaks detected based on their accurate masses and fragmentation. A comparison between the experimental findings and the in silico metabolism prediction using MetaSite software showed a good accordance between experimental and in silico data. Thus, the use of in silico metabolism prediction might represent a useful tool for the forensic and clinical toxicologist to identify possible main biomarkers for synthetic cannabinoids in biological fluids, especially urine, following their administration.

Figure

JWH-098: Most probable predicted sites of metabolism and main metabolites formed in vitro

Keywords

Synthetic cannabinoids In silico metabolism prediction In vitro metabolism Forensic toxicology 

References

  1. 1.
    UNODC (2013) The challenge of new psychoactive substances. http://www.unodc.org/documents/scientific/NPS_2013_SMART.pdf. Accessed 1 Feb 2014
  2. 2.
    Sobolevsky T, Prasolov I, Rodchenkov G (2010) Detection of JWH-018 metabolites in smoking mixture post-administration urine. Forensic Sci Int 200:141–147CrossRefGoogle Scholar
  3. 3.
    Moran CL, Le VH, Chimalakonda KC, Smedley AL, Lackey FD, Owen SN, Kennedy PD, Endres GW, Ciske FL, Kramer JB, Kornilov AM, Bratton LD, Dobrowolski PJ, Wessinger WD, Fantegrossi WE, Prather PP, James LP, Radominska-Pandya A, Moran JH (2011) Quantitative measurement of JWH-018 and JWH-073 metabolites excreted in human urine. Anal Chem. doi:10.1021/ac2005636 Google Scholar
  4. 4.
    Möller I, Wintermeyer A, Bender K, Jübner M, Thomas A, Krug O, Schanzer W, Thevis M (2010) Screening for the synthetic cannabinoid JWH-018 and its major metabolites in human doping controls. Drug Test Anal. doi:10.1002/dta.158 Google Scholar
  5. 5.
    Grigoryev A, Melnika A, Savchukb S, Simonovc A, Rozhanetsd V (2011) Gas and liquid chromatography–mass spectrometry studies on the metabolism of the synthetic phenylacetylindolecannabimimetic JWH-250, the psychoactive component of smoking mixtures. J Chromatogr B 879:2519–2526CrossRefGoogle Scholar
  6. 6.
    Adamowicz P, Zuba D, Sekuła K (2013) Analysis of UR-144 and its pyrolysis product in blood and their metabolites in urine. Forensic Sci Int. doi:10.1016/j.forsciint.2013.10.005 Google Scholar
  7. 7.
    Kavanagh P, Grigoryev A, Melnik A, Savchuk S, Simonov A, Rozhanets V (2013) Detection and tentative identification of urinary phase I metabolites of phenylacetylindolecannabimimetics JWH-203 and JWH-251, by GC-MS and LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci. doi:10.1016/j.jchromb.2013.07.005 Google Scholar
  8. 8.
    Kavanagh P, Grigoryev A, Melnik A, Simonov A (2012) The identification of the urinary metabolites of 3-(4-methoxybenzoyl)-1-pentylindole (RCS-4), a novel cannabimimetic, by gas chromatography–mass spectrometry. J Anal Toxicol. doi:10.1093/jat/bks032 Google Scholar
  9. 9.
    Grigoryev A, Kavanagh P, Melnik A, Savchuk S, Simonov A (2013) Gas and liquid chromatography-mass spectrometry detection of the urinary metabolites of UR-144 and its major pyrolysis product. J Anal Toxicol. doi:10.1093/jat/bkt028 Google Scholar
  10. 10.
    Grigoryev A, Kavanagh P, Melnik A (2013) The detection of the urinary metabolites of 1-[(5-fluoropentyl)-1H-indol-3-yl]-(2-iodophenyl)methanone (AM-694), a high affinity cannabimimetic, by gas chromatography-mass spectrometry. Drug Test Anal. doi:10.1002/dta.1336 Google Scholar
  11. 11.
    Hutter M, Broecker S, Kneisel S, Auwärter V (2012) Identification of the major urinary metabolites in man of seven synthetic cannabinoids of the aminoalkylindole type present as adulterants in ‘herbal mixtures’ using LC-MS/MS techniques. J Mass Spectrom. doi:10.1002/jms.2026 Google Scholar
  12. 12.
    Grigoryev A, Kavanagh P, Melnik A (2012) The detection of the urinary metabolites of 3-[(adamantan-1-yl)carbonyl]-1-pentylindole (AB-001), a novel cannabimimetic, by gas chromatography–mass spectrometry. Drug Test Anal. doi:10.1002/dta.350 Google Scholar
  13. 13.
    De Brabanter N, Esposito S, Tudela E, Lootens L, Meuleman P, Leroux-Roels G, Van Deventer K, Eenoo P (2013) In vivo and in vitro metabolism of the synthetic cannabinoid JWH-200. Rapid Commun Mass Spectrom. doi:10.1002/rcm.6673 Google Scholar
  14. 14.
    De Brabanter N, Esposito S, Geldof L, Lootens L, Meuleman P, Leroux-Roels G, Van Deventer K, Eenoo P (2013) In vivo and in vitro metabolism of JWH-122. Forensic Toxicol. doi:10.1007/s11419-013-0179-4 Google Scholar
  15. 15.
    Wintermeyer A, Möller I, Thevis M, Jübner M, Beike J, Rothschild MA, Bender K (2010) In vitro phase I metabolism of the synthetic cannabimimetic JWH-018. Anal Bioanal Chem. doi:10.1007/s00216-010-4171-0 Google Scholar
  16. 16.
    Zhang Q, Ma P, Cole RB, Wang G (2006) Identification of in vitro metabolites of JWH-015, an aminoalkylindole agonist for the peripheral cannabinoid receptor (CB2) by HPLC-MS/MS. Anal Bioanal Chem. doi:10.1007/s00216-006-0717-6 Google Scholar
  17. 17.
    Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R (2005) MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 48:6970–6979CrossRefGoogle Scholar
  18. 18.
    Cruciani G, Baroni M, Benedetti P, Goracci L, Fortuna CG (2013) Exposition and reactivity optimization to predict sites of metabolism in chemicals. Drug Discov Today Technol. doi:10.1016/j.ddtec.2012.11.001 Google Scholar
  19. 19.
    Zelesky V, Schneider R, Janiszewski J, Zamora I, Ferguson J, Troutman M (2013) Software automation tools for increased throughput metabolic soft-spot identification in early drug discovery. Bioanalysis. doi:10.4155/bio.13.89 Google Scholar
  20. 20.
    Tyrkko E, Pelander A, Ketola RA, Ojanpera I (2013) In silico and in vitro metabolism studies support identification of designer drugs in human urine by liquid chromatography/quadrupole-time of flight mass spectrometry. Anal Bioanal Chem 405:6697–6709CrossRefGoogle Scholar
  21. 21.
    Bonn B, Leandersson C, Fontaine F, Zamora I (2010) Enhanced metabolite identification with MS(E) and a semi-automated software for structural elucidation. Rapid Commun Mass Spectrom. doi:10.1002/rcm.4753 Google Scholar
  22. 22.
  23. 23.
    de Graaf IA, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, Groothuis GM (2010) Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc. doi:10.1038/nprot.2010.111 Google Scholar
  24. 24.
    Brandon EF, Raap CD, Meijerman I, Beijnen JH, Schellens JH (2003) An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol 189:233–246CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sabina Strano-Rossi
    • 1
  • Luca Anzillotti
    • 1
  • Stefania Dragoni
    • 2
  • Roberto Maria Pellegrino
    • 2
  • Laura Goracci
    • 2
  • Vincenzo Lorenzo Pascali
    • 1
  • Gabriele Cruciani
    • 2
  1. 1.Institute of Public HealthCatholic University of Sacred HeartRomeItaly
  2. 2.Department of ChemistryUniversity of PerugiaPerugiaItaly

Personalised recommendations