Analytical and Bioanalytical Chemistry

, Volume 406, Issue 18, pp 4315–4324 | Cite as

Continuous vs. segmented second-dimension system gradients for comprehensive two-dimensional liquid chromatography of sugarcane (Saccharum spp.)

  • Gabriel Mazzi Leme
  • Francesco Cacciola
  • Paola Donato
  • Alberto José Cavalheiro
  • Paola Dugo
  • Luigi MondelloEmail author
Paper in Forefront
Part of the following topical collections:
  1. ABC Highlights: authored by Rising Stars and Top Experts


A comprehensive two-dimensional liquid chromatography system in combination with photodiode array and mass spectrometry detection was developed for analysis of polyphenols in sugarcane (Saccharum spp.) leaf extracts. To achieve this, a micro cyano column and a partially porous octodecylsilica column were used in the first and the second dimension, respectively. The choice of the cyano column over other reversed-phase columns tested for the first-dimension separation was due to its lower correlation selectivity with respect to the octodecylsilica column, which was used for the second-dimension separation. Even when reversed-phase mode was used in both dimensions, a satisfactory degree of orthogonality was achieved by use of different gradient elution modes in the second dimension. By means of the setup investigated, 38 polyphenolic compounds were detected, and among them 24 were positively identified by means of complementary data from photodiode array and mass spectrometry detection and an in-house database. This is the first time such a powerful analytical technique has been used for polyphenolic characterization of sugarcane extracts.


RP-LC×RP-LC contour plot of a sugarcane leaf extract


Polyphenols Comprehensive two-dimensional liquid chromatography Mass spectrometry Cyano column Sugarcane 



The authors gratefully acknowledge Shimadzu and Sigma-Aldrich/Supelco for their continuous support. G.M.L. thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico for a scholarship (process number BEX 5605/13-0).


  1. 1.
    CONAB Companhia Nacional de Abastecimento (2013). Conab - Companhia Nacional de Abastecimento. Accessed 29 Nov 2013
  2. 2.
    Li X, Shun Y, Bin T, Xue L, Chunmei J, Hang S (2010) Determination and comparison of flavonoids and anthocyanins in Chinese sugarcane tips, stems, roots and leaves. J Sep Sci 33:1216–1223Google Scholar
  3. 3.
    Colombo R, Yariwake JH, Queiroz EF, Ndjoko K, Hostettmann K (2005) On-line identification of sugarcane (Saccharum officinarum L.) methoxyflavones by liquid chromatography–UV detection using post-column derivatization and liquid chromatography–mass spectrometry. J Chromatogr A 1082:51–59CrossRefGoogle Scholar
  4. 4.
    Colombo R, Yariwake JH, Queiroz EF, Ndjoko K, Hostettmann K (2006) On-line identification of further flavone C- and O-glycosides from Sugarcane (Saccharum officinarum L., Gramineae) by HPLC-UV-MS. Phytochem Anal 17:337–343CrossRefGoogle Scholar
  5. 5.
    Colombo R, Yariwake JH, Mccullaghb M (2008) Study of C- and O-glycosylflavones in sugarcane extracts using liquid chromatography-exact mass measurement mass spectrometry. J Braz Chem Soc 19:483–490CrossRefGoogle Scholar
  6. 6.
    Cavalheiro AJ, Coutinho ID, Leme GM, Silva AA, Silva APD (2012) In: Stradiotto NR, Lemos EG (eds) Bioenergia: pesquisa, desenvolvimento e inovação. São Paulo, Cultura AcadêmicaGoogle Scholar
  7. 7.
    Uysal UD, Aturki Z, Raggi MA, Fanali S (2009) Separation of catechins and methylxanthines in tea samples by capillary electrochromatography. J Sep Sci 32:1002–1010CrossRefGoogle Scholar
  8. 8.
    Iacopini P, Baldi M, Storchi P, Sebastian L (2008) Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J Food Compos Anal 21:589–598CrossRefGoogle Scholar
  9. 9.
    Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L (2008) Comprehensive multidimensional liquid chromatography: theory and applications. J Chromatogr A 1184:353–368CrossRefGoogle Scholar
  10. 10.
    Stoll DR (2010) Recent progress in online, comprehensive two-dimensional high-performance liquid chromatography for non-proteomic applications. Anal Bional Chem 397:979–986CrossRefGoogle Scholar
  11. 11.
    François I, Sandra K, Sandra P (2009) Comprehensive liquid chromatography: fundamental aspects and practical considerations—a review. Anal Chim Acta 641:14–31CrossRefGoogle Scholar
  12. 12.
    Donato P, Cacciola F, Tranchida PQ, Dugo P, Mondello L (2012) Mass spectrometry detection in comprehensive liquid chromatography: Basic concepts, instrumental aspects, applications and trends. Mass Spectrom Rev 31:523–559CrossRefGoogle Scholar
  13. 13.
    Blahovà E, Jandera P, Cacciola F, Mondello L (2006) Two-dimensional and serial column reversed-phase separation of phenolic antioxidants on octadecyl-, polyethyleneglycol-, and pentafluorophenylpropyl-silica columns. J Sep Sci 29:555–566CrossRefGoogle Scholar
  14. 14.
    Cacciola F, Jandera P, Blahovà E, Mondello L (2006) Development of different comprehensive two dimensional systems for the separation of phenolic antioxidants. J Sep Sci 29:2500–2513CrossRefGoogle Scholar
  15. 15.
    François I, de Villers A, Sandra P (2006) Considerations on the possibilities and limitations of comprehensive normal phase–reversed phase liquid chromatography (NPLC × RPLC). J Sep Sci 29:492–498CrossRefGoogle Scholar
  16. 16.
    Cacciola F, Jandera P, Mondello L (2007) Temperature effects on separation on zirconia columns: Applications to one- and two-dimensional LC separations of phenolic antioxidants. J Sep Sci 30:462–474CrossRefGoogle Scholar
  17. 17.
    Cacciola F, Jandera P, Mondello L (2007) Comparison of high-temperature gradient heart-cutting and comprehensive LC × LC systems for the separation of phenolic antioxidants. Chromatographia 66:661–667CrossRefGoogle Scholar
  18. 18.
    Cacciola F, Jandera P, Hajdù Z, Česla P, Mondello L (2007) Comprehensive two-dimensional liquid chromatography with parallel gradients for separation of phenolic and flavone antioxidants. J Chromatogr A 1149:73–87CrossRefGoogle Scholar
  19. 19.
    Montero L, Herrero M, Prodanov M, Ibanàñez E, Cifuentes A (2013) Characterization of grape seed procyanidins by comprehensive two-dimensional hydrophilic interaction × reversed phase liquid chromatography coupled to diode array detection and tandem mass spectrometry. Anal Bioanal Chem 405:4627–4638CrossRefGoogle Scholar
  20. 20.
    Kivilompolo M, Hyötyläinen T (2007) Comprehensive two-dimensional liquid chromatography in analysis of Lamiaceae herbs: characterisation and quantification of antioxidant phenolic acids. J Chromatogr A 1145:155–164CrossRefGoogle Scholar
  21. 21.
    Dugo P, Cacciola F, Herrero M, Donato P, Mondello L (2008) Use of partially porous column as second dimension in comprehensive two-dimensional system for analysis of polyphenolic antioxidants. J Sep Sci 31:3297–3308CrossRefGoogle Scholar
  22. 22.
    Hájek T, Škeříková V, Česla P, Vyňuchalová K, Jandera P (2008) Multidimensional LC × LC analysis of phenolic and flavone natural antioxidants with UV-electrochemical coulometric and MS detection. J Sep Sci 31:3309–3328CrossRefGoogle Scholar
  23. 23.
    Kivilompolo M, Obůrka V, Hyötyläinen T (2008) Comprehensive two-dimensional liquid chromatography in the analysis of antioxidant phenolic compounds in wines and juices. Anal Bioanal Chem 391:373–380CrossRefGoogle Scholar
  24. 24.
    François I, de Villiers A, Tienpont B, David F, Sandra P (2008) Comprehensive two-dimensional liquid chromatography applying two parallel columns in the second dimension. J Chromatogr A 1178:33–42CrossRefGoogle Scholar
  25. 25.
    Dugo P, Cacciola F, Donato P, Airado-Rodriguez D, Herrero M, Mondello L (2009) Comprehensive two-dimensional liquid chromatography to quantify polyphenols in red wines. J Chromatogr A 1216:7483–7487CrossRefGoogle Scholar
  26. 26.
    Dugo P, Cacciola F, Donato F, Jacques RA, Caramao EB, Mondello L (2009) High efficiency liquid chromatography techniques coupled to mass spectrometry for the characterization of mate extracts. J Chromatogr A 1216:7213–7221CrossRefGoogle Scholar
  27. 27.
    Česla P, Hájek T, Jandera P (2009) Optimization of two-dimensional gradient liquid chromatography separations. J Chromatogr A 1216:3443–3457CrossRefGoogle Scholar
  28. 28.
    Kalili KM, de Villiers A (2009) Off-line comprehensive 2-dimensional hydrophilic interaction × reversed phase liquid chromatography analysis of procyanidins. J Chromatogr A 1216:6274–6284CrossRefGoogle Scholar
  29. 29.
    Jandera P, Hájek T, Česla P (2010) Comparison of various second-dimension gradient types in comprehensive two-dimensional liquid chromatography. J Sep Sci 33:1382–1397CrossRefGoogle Scholar
  30. 30.
    Mnatsakanyan M, Stevenson PG, Shock D, Conlan XA, Goodie TA, Spencer KN, Barnett NW, Francis PS, Shalliker RA (2010) The assessment of π–π selective stationary phases for two-dimensional HPLC analysis of foods: application to the analysis of coffee. Talanta 82:1349–1347CrossRefGoogle Scholar
  31. 31.
    Kalili KM, de Villiers A (2010) Off-line comprehensive two-dimensional hydrophilic interaction × reversed phase liquid chromatographic analysis of green tea phenolics. J Sep Sci 33:853–863CrossRefGoogle Scholar
  32. 32.
    Russo M, Cacciola F, Bonaccorsi I, Dugo P, Mondello L (2011) Determination of flavanones in CITRUS juices by means of one-and two-dimensional liquid chromatography. J Sep Sci 34:681–687CrossRefGoogle Scholar
  33. 33.
    Scoparo CT, Souza LM, Dartora N, Sassaki GL, Gorin PAJ, Iacomini M (2012) Analysis of Camellia sinensis green and black teas via ultra high performance liquid chromatography assisted by liquid-liquid partition and two-dimensional liquid chromatography (size exclusion × reversed phase). J Chromatogr A 1222:29–37CrossRefGoogle Scholar
  34. 34.
    Beelders T, Kalili KM, Joubert E, Beer D, de Villiers A (2012) Comprehensive two-dimensional liquid chromatographic analysis of rooibos (Aspalathus linearis) phenolics. J Sep Sci 35:1808–1820CrossRefGoogle Scholar
  35. 35.
    Pòl J, Hohnovà B, Hyötyläinen T (2007) Characterisation of Stevia rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry. J Chromatogr A 1150:85–92CrossRefGoogle Scholar
  36. 36.
    Cacciola F, Delmonte P, Jaworska K, Dugo P, Mondello L (2011) Employing ultra high pressure liquid chromatography as the second dimension in a comprehensive two-dimensional system for analysis of Stevia rebaudiana extracts. J Chromatogr A 1218:2012–2018CrossRefGoogle Scholar
  37. 37.
    Funari CS, Carneiro RL, Andrade AM, Hilder EF, Cavalheiro AJ (2013) Green chromatographic fingerprinting: an environmentally friendly approach for the development of separation methods for fingerprinting complex matrices. J Sep Sci 37:37–44CrossRefGoogle Scholar
  38. 38.
    Murphy RE, Schure MR, Foley JP (1998) Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem 70:1585–1594CrossRefGoogle Scholar
  39. 39.
    Snyder LR, Kirkland JJ, Loyd JW (2010) Introduction to modern liquid chromatography. Wiley, TotowaGoogle Scholar
  40. 40.
    Jandera P (2012) Programmed elution in comprehensive two-dimensional liquid chromatography. J Chromatogr A 1255:112–129CrossRefGoogle Scholar
  41. 41.
    Neue UW (2005) Theory of peak capacity in gradient elution. J Chromatogr A 1079:153–161CrossRefGoogle Scholar
  42. 42.
    Gu H, Huang Y, Carr PW (2011) Peak capacity optimization in comprehensive two dimensional liquid chromatography: a practical approach. J Chromatogr A 1218:64–73CrossRefGoogle Scholar
  43. 43.
    Liu Z, Patterson DG, Lee ML (1995) Geometric approach to factor analysis for the estimation of orthogonality and practical peak capacity in comprehensive two-dimensional separations. Anal Chem 67:3840–3845CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gabriel Mazzi Leme
    • 1
    • 2
  • Francesco Cacciola
    • 3
    • 4
  • Paola Donato
    • 1
    • 4
    • 5
  • Alberto José Cavalheiro
    • 2
  • Paola Dugo
    • 1
    • 4
    • 5
  • Luigi Mondello
    • 1
    • 4
    • 5
    Email author
  1. 1.Dipartimento di Scienze del Farmaco e dei Prodotti per la SaluteUniversity of MessinaMessinaItaly
  2. 2.Institute of Chemistry, São Paulo State University - UNESPAraraquaraBrazil
  3. 3.Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimenti e della SaluteUniversity of MessinaMessinaItaly
  4. 4.Chromaleont s.r.l. A start-up of the University of Messina, c/o Dipartimento di Scienze del Farmaco e dei Prodotti per la SaluteUniversity of MessinaMessinaItaly
  5. 5.Centro Integrato di Ricerca, University Campus Bio-Medico of RomeRomeItaly

Personalised recommendations