Analytical and Bioanalytical Chemistry

, Volume 406, Issue 17, pp 4207–4215 | Cite as

Retention and selectivity of basic drugs on solid-phase extraction sorbents: Application to direct determination of β-blockers in urine

  • Warunya BoonjobEmail author
  • Hana Sklenářová
  • Francisco J. Lara
  • Ana M. García-Campaña
  • Petr Solich
Research Paper


Seven solid phase sorbent materials with reversed-phase, mixed-mode interactions (ion-exchange and reversed-phase), and molecularly imprinted polymers (MIP), namely Oasis HLB, Oasis MAX, Oasis MCX, Bond Elute Plexa, Bond Elute Plexa PAX, Bond Elute Plexa PCX, and SupelMIP sorbents, were investigated. The present study was focused on the retention and elution of pharmaceutically active substances based on several analyte-sorbent interaction properties. Basic drugs, such as β-blockers (i.e., atenolol, pindolol, acebutolol, metoprolol, labetalol, and propranolol) were selected as the model compounds for this study. These compounds are frequently encountered in anti-doping tests. The extraction efficiencies of the individual sorbents were compared based on the recovery of known amounts of the targeted analytes in a metered elution volume (500 μL) in three separate elution fractions. The elution efficiency of the total amount of the target analytes on various sorbents was not appreciably influenced by the volume of eluent required for complete elution. Based on the small matrix effects and clear baseline, SupelMIP was the most suitable sorbent for urine analysis. The relative analyte recoveries of the SPE-HPLC procedure proved satisfactory for the range from 94 % to 105 %, with an RSD ranging from 2 % to 4 %. The regression equations for all of the targeted compounds exhibited excellent linearity (r 2  > 0.9991) over the range of 10 to 1000 ng mL–1. The limits of detection and quantification for the selected β-blocker compounds in urine were in the ranges of 0.6 to 2.0 ng mL–1 and 2.0 to 6.7 ng mL–1, respectively.


ß-Blockers SPE HPLC Biological samples MIP 



This work is co-financed by the European Social Fund and the state budget of the Czech Republic. Project no. CZ.1.07/2.3.00/30.0061 (FAF12).


  1. 1.
    Galera MM, Vázquez PP, Vázquez MDMP, García MDG, Amate CF (2011) J Sep Sci 34:1796–1804CrossRefGoogle Scholar
  2. 2.
    Quintana JB, Boonjob W, Miró M, Cerdà V (2009) Anal Chem 81:4822–4830CrossRefGoogle Scholar
  3. 3.
    Pujos E, Cren-Olivé C, Paisse O, Flament-Waton MM, Grenier-Loustalot MF (2009) J Chromatogr B 877:4007–4014CrossRefGoogle Scholar
  4. 4.
    D’Archivio AA, Fanelli M, Mazzeo P, Ruggieri F (2007) Talanta 71:25–30CrossRefGoogle Scholar
  5. 5.
    Tachon R, Pichon V, Barbe Le Borgne M, Minet JJ (2008) J Chromatogr A 1185:1–8CrossRefGoogle Scholar
  6. 6.
    Ali I, Al-Othman ZA, Hussain A, Saleem K, Aboul-Enein HY (2011) Chromatographia 73:251–256CrossRefGoogle Scholar
  7. 7.
    Magiera S, Uhlschmied C, Rainer M, Huck C, Baranowska I, Bonn GK (2011) J Pharm Biomed 56:93–102CrossRefGoogle Scholar
  8. 8.
    Baranowska I, Magiera S, Baranowski J (2011) J Chromatogr Sci 49:764–773CrossRefGoogle Scholar
  9. 9.
    Azzouz A, Ballesteros E (2012) Sci Total Environ 419:208–215CrossRefGoogle Scholar
  10. 10.
    Salem AA, Wasfi IA, Al-Nassibi SS (2012) J Chromatogr B 908:27–38CrossRefGoogle Scholar
  11. 11.
    Martin PD, Jones GR, Stringer F, Wilson ID (2004) J Pharm Biomed 35:1231–1239CrossRefGoogle Scholar
  12. 12.
    Souverain S, Rudaz S, Veuthey JL (2004) J Chromatogr B 801:141–156CrossRefGoogle Scholar
  13. 13.
    Chiap P, Rbeida O, Christiaens B, Hubert P, Lubda D, Boos KS, Crommen J (2002) J Chromatogr A 975:145–155CrossRefGoogle Scholar
  14. 14.
    Morante-Zarcero S, Sierra I (2012) Chirality 24:860–866CrossRefGoogle Scholar
  15. 15.
    Wilde ML, Kümmerer K, Martins AF (2012) J Braz Chem Soc 23:1732–1740CrossRefGoogle Scholar
  16. 16.
    Hajizadeh S, Xu C, Kirsebom H, Ye L, Mattiasson B (2013) J Chromatogr A 1274:6–12CrossRefGoogle Scholar
  17. 17.
    Puoci F, Iemma F, Cirillo G, Curcio M, Parisi OI, Spizzirri UG, Picci N (2009) Eur Polym J 45:1634–1640CrossRefGoogle Scholar
  18. 18.
    Sanbe H, Haginaka J (2003) Analyst 128:593–597CrossRefGoogle Scholar
  19. 19.
    Boonjob W, Yu Y, Miró M, Segundo MA, Wang J, Cerdà V (2010) Anal Chem 82:3052–3060CrossRefGoogle Scholar
  20. 20.
    Boonjob W, Miró M, Segundo MA, Cerdà V (2011) Anal Chem 83:5237–5244CrossRefGoogle Scholar
  21. 21.
    Semenistaya EN, Saveleva NB, Sobolevskii TG, Rodchenkov GM (2013) 68:173–182Google Scholar
  22. 22.
    World-Anti-Doping-Agency (2013). The 2013 prohibited list international standard, 11 January 2013Google Scholar
  23. 23.
    Waters (2003) Oasis Applications Notebook; available at: Accessed 14 Sept 2013
  24. 24.
    Agilent-Technologies (2011) Agilent Bond Elut Plexa and Polymeric SPE selection GuideGoogle Scholar
  25. 25.
    Babić S, Horvat AJM, Mutavdžić Pavlović D, Kaštelan-Macan M (2007) TrAC Trends Anal Chem 26:1043–1061CrossRefGoogle Scholar
  26. 26.
    Boos KS, Fleischer CT (2001) Fresen J Anal Chem 371:16–20Google Scholar
  27. 27.
    Hu Y, Pan J, Zhang K, Lian H, Li G (2013) Trends Anal Chem 43:37–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Warunya Boonjob
    • 1
    Email author
  • Hana Sklenářová
    • 1
  • Francisco J. Lara
    • 2
  • Ana M. García-Campaña
    • 2
  • Petr Solich
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of PharmacyCharles University in PragueHradec KrálovéCzech Republic
  2. 2.Department of Analytical Chemistry, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations