Analytical and Bioanalytical Chemistry

, Volume 406, Issue 13, pp 3079–3089 | Cite as

Characterization of heparin–protein interaction by saturation transfer difference (STD) NMR

  • Fei Yu
  • Sucharita Roy
  • Enrique Arevalo
  • John Schaeck
  • Jason Wang
  • Kimberly Holte
  • Jay Duffner
  • Nur Sibel Gunay
  • Ishan Capila
  • Ganesh V. KaundinyaEmail author
Research Paper


The binding affinity and specificity of heparin to proteins is widely recognized to be sulfation-pattern dependent. However, for the majority of heparin-binding proteins (HBPs), it still remains unclear what moieties are involved in the specific binding interaction. Here, we report our study using saturation transfer difference (STD) nuclear magnetic resonance (NMR) to map out the interactions of synthetic heparin oligosaccharides with HBPs, such as basic fibroblast growth factor (FGF2) and fibroblast growth factor 10 (FGF10), to provide insight into the critical epitopes of heparin ligands involved. The irradiation frequency of STD NMR was carefully chosen to excite the methylene protons so that enhanced sensitivity was obtained for the heparin–protein complex. We believe this approach opens up additional application avenues to further investigate heparin–protein interactions.


Heparin Saturation transfer difference NMR Binding epitope FGF2 FGF10 Surface plasmon resonance 



The authors would like to thank Dr. Desiree Tsao for sharing her expertise in STD NMR.

Supplementary material

216_2014_7729_MOESM1_ESM.pdf (3.4 mb)
ESM 1 (PDF 3519 kb)


  1. 1.
    Bitomsky W, Wade RC (1999) Docking of glycosaminoglycans to heparin-binding proteins: validation for aFGF, bFGF, and antithrombin and application to IL-8. J Am Chem Soc 121:3004–3013. doi: 10.1021/ja983319g CrossRefGoogle Scholar
  2. 2.
    Castellot JJ Jr, Hoover RL, Harper PA, Karnovsky MJ (1985) Heparin and glomerular epithelial cell-secreted heparin-like species inhibit mesangial-cell proliferation. Am J Pathol 120:427–435Google Scholar
  3. 3.
    Luster AD (1998) Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445CrossRefGoogle Scholar
  4. 4.
    Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–728CrossRefGoogle Scholar
  5. 5.
    Parish CR (2006) The role of heparan sulphate in inflammation. Nat Rev Immunol 6:633–643. doi: 10.1038/nri1918 CrossRefGoogle Scholar
  6. 6.
    Waugh DJJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14:6735–6741. doi: 10.1158/1078-0432.ccr-07-4843 CrossRefGoogle Scholar
  7. 7.
    Olson ST, Srinivasan KR, Bjork I, Shore JD (1981) Binding of high affinity heparin to antithrombin III. Stopped flow kinetic studies of the binding interaction. J Biol Chem 256:11073–11079Google Scholar
  8. 8.
    DiGabriele AD, Lax I, Chen DI, Svahn CM, Jaye M, Schlessinger J, Hendrickson WA (1998) Structure of a heparin-linked biologically active dimer of fibroblast growth factor. Nature 393:812–817CrossRefGoogle Scholar
  9. 9.
    Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120CrossRefGoogle Scholar
  10. 10.
    Nelson RM, Cecconi O, Roberts WG, Aruffo A, Linhardt RJ, Bevilacqua MP (1993) Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82:3253–3258Google Scholar
  11. 11.
    Duensing TD, Van PJPM (1998) Vitronectin binds to the gonococcal adhesin OpaA through a glycosaminoglycan molecular bridge. Biochem J 334:133–139Google Scholar
  12. 12.
    Spillmann D, Witt D, Lindahl U (1998) Defining the interleukin-8-binding domain of heparan sulfate. J Biol Chem 273:15487–15493CrossRefGoogle Scholar
  13. 13.
    Dong J, Peters-Libeu CA, Weisgraber KH, Segelke BW, Rupp B, Capila I, Hernaiz MJ, LeBrun LA, Linhardt RJ (2001) Interaction of the N-terminal domain of apolipoprotein E4 with heparin. Biochemistry 40:2826–2834CrossRefGoogle Scholar
  14. 14.
    Harrop HA, Coombe DR, Rider CC (1994) Heparin specifically inhibits binding of V3 loop antibodies to HIV-1 gp120, an effect potentiated by CD4 binding. AIDS 8:183–192CrossRefGoogle Scholar
  15. 15.
    Rider CC, Coombe DR, Harrop HA, Hounsell EF, Bauer C, Feeney J, Mulloy B, Mahmood N, Hay A, Parish CR (1994) Anti-HIV-1 activity of chemically modified heparins: correlation between binding to the V3 loop of gp120 and inhibition of cellular HIV-1 infection in vitro. Biochemistry 33:6974–6980CrossRefGoogle Scholar
  16. 16.
    Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, Cohen GH, Eisenberg RJ, Rosenberg RD, Spear PG (1999) A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 99:13–22CrossRefGoogle Scholar
  17. 17.
    Janis JS (2012) Glycosaminoglycan and chemokine/growth factor interactions. Handb Exp Pharmacol 207:307–324. doi: 10.1007/978-3-642-23056-1_13 CrossRefGoogle Scholar
  18. 18.
    Capila I, Linhardt RJ (2002) Heparin–protein interactions. Angew Chem Int Ed 41:390–412. doi: 10.1002/1521-3773(20020201)41:3<390::aid-anie390>;2-b CrossRefGoogle Scholar
  19. 19.
    Casu B, Lindahl U (2001) Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 57:159–206CrossRefGoogle Scholar
  20. 20.
    Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173. doi: 10.1172/jci13530 CrossRefGoogle Scholar
  21. 21.
    Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72:455–482. doi: 10.1111/j.1747-0285.2008.00741.x CrossRefGoogle Scholar
  22. 22.
    Lindahl U, Backstrom G, Hook M, Thunberg L, Fransson LA, Linker A (1979) Structure of the antithrombin-binding site in heparin. Proc Natl Acad Sci U S A 76:3198–3202CrossRefGoogle Scholar
  23. 23.
    Rosenberg RD, Lam L (1979) Correlation between structure and function of heparin. Proc Natl Acad Sci U S A 76:1218–1222. doi: 10.1073/pnas.76.3.1218 CrossRefGoogle Scholar
  24. 24.
    Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279:12346–12354. doi: 10.1074/jbc.M313523200 CrossRefGoogle Scholar
  25. 25.
    Freire E, Mayorga OL, Straume M (1990) Isothermal titration calorimetry. Anal Chem 62:950A–959A. doi: 10.1021/ac00217a715 CrossRefGoogle Scholar
  26. 26.
    Ahl I-M, Jonsson B-H, Tibell LAE (2009) Thermodynamic characterization of the interaction between the C-terminal domain of extracellular superoxide dismutase and heparin by isothermal titration calorimetry. Biochemistry 48:9932–9940. doi: 10.1021/bi900981k CrossRefGoogle Scholar
  27. 27.
    Rice KG, Wu P, Brand L, Lee YC (1991) Interterminal distance and flexibility of a triantennary glycopeptide as measured by resonance energy transfer. Biochemistry 30:6646–6655. doi: 10.1021/bi00241a003 CrossRefGoogle Scholar
  28. 28.
    Capila I, VanderNoot VA, Mealy TR, Seaton BA, Linhardt RJ (1999) Interaction of heparin with annexin V. FEBS Lett 446:327–330. doi: 10.1016/s0014-5793(99)00245-8 CrossRefGoogle Scholar
  29. 29.
    Kumar V, Yadav VK, Hassan MI, Singh AK, Dey S, Singh S, Singh TP, Yadav S (2012) Kinetic and structural studies on the interactions of heparin and proteins of human seminal plasma using surface plasmon resonance. Protein Pept Lett 19:795–803. doi: 10.2174/092986612801619525 CrossRefGoogle Scholar
  30. 30.
    Palmer RA, Niwa H (2003) X-ray crystallographic studies of protein–ligand interactions. Biochem Soc Trans 31:973–979. doi: 10.1042/bst0310973 CrossRefGoogle Scholar
  31. 31.
    Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117. doi: 10.1021/ja0100120 CrossRefGoogle Scholar
  32. 32.
    Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42:864–890. doi: 10.1002/anie.200390233 CrossRefGoogle Scholar
  33. 33.
    Marco G, Stefano E, Pierre M, Timothy RR, Davide G, Benito C, Christian B, Giangiacomo T, Christian V (2013) An unusual antithrombin-binding heparin octasaccharide with an additional 3-O-sulfated glucosamine in the active pentasaccharide sequence. Biochem J 449(2):343–351. doi: 10.1042/bj20121309 CrossRefGoogle Scholar
  34. 34.
    Christian V, Stefano E, Elena U, Davide G, Pierre M, Frederic H, Christian B, Benito C, Giangiacomo T, Marco G (2013) Heparin dodecasaccharide containing two antithrombin-binding pentasaccharides: structural features and biological properties. J Biol Chem 288(36):25895–25907. doi: 10.1074/jbc.M113.485268 CrossRefGoogle Scholar
  35. 35.
    Viegas A, Manso J, Nobrega FL, Cabrita EJ (2011) Saturation-transfer difference (STD) NMR: a simple and fast method for ligand screening and characterization of protein binding. J Chem Educ 88:990–994. doi: 10.1021/ed101169t CrossRefGoogle Scholar
  36. 36.
    Meyer B, Klein J, Mayer M, Meinecke R, Möller H, Neffe A, Schuster O, Wülfken J, Ding Y, Knaie O, Labbe J, Palcic MM, Hindsgaul O, Wagner B, Ernst B (2004) Saturation transfer difference NMR spectroscopy for identifying ligand epitopes and binding specificities. In: Hamann A, Asadullah K, Schottelius A (eds) Leucocyte trafficking, vol 44. Ernst Schering Research Foundation Workshop, Springer Berlin Heidelberg, pp 149–167. doi: 10.1007/978-3-662-05397-3_9 CrossRefGoogle Scholar
  37. 37.
    Jayalakshmi V, Krishna NR (2002) Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J Magn Reson 155(1):106–118. doi: 10.1006/jmre.2001.2499 CrossRefGoogle Scholar
  38. 38.
    Thompson LD, Pantoliano MW, Springer BA (1994) Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry 33:3831–3840. doi: 10.1021/bi00179a006 CrossRefGoogle Scholar
  39. 39.
    Guglieri S, Hricovíni M, Raman R, Polito L, Torri G, Casu B, Sasisekharan R, Guerrini M (2008) Minimum FGF2 binding structural requirements of heparin and heparan sulfate oligosaccharides as determined by NMR spectroscopy. Biochemistry 47(52):13862–13869. doi: 10.1021/bi801007p CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fei Yu
    • 1
  • Sucharita Roy
    • 1
  • Enrique Arevalo
    • 1
  • John Schaeck
    • 1
  • Jason Wang
    • 1
  • Kimberly Holte
    • 1
  • Jay Duffner
    • 1
  • Nur Sibel Gunay
    • 1
  • Ishan Capila
    • 1
  • Ganesh V. Kaundinya
    • 1
    Email author
  1. 1.Momenta PharmaceuticalsCambridgeUSA

Personalised recommendations