Analytical and Bioanalytical Chemistry

, Volume 406, Issue 17, pp 4013–4031

Application of capillary electrophoresis for the early diagnosis of cancer

Review

Abstract

Early diagnosis is the key to the effective treatment of cancer. The detection of cancer biomarkers plays a critical role not only in cancer early diagnosis, but also in classification and staging tumor progression, or assessment prognosis and treatment response. Currently, various molecular diagnostic techniques have been developed for cancer biomarker studies, with many of the more effective approaches requiring a separation step before detection. Capillary electrophoresis (CE) can perform rapid and efficient separation with small samples, which is well-suited for analysis of both small- and macro- molecule biomarkers in complex samples. CE has different separation modes and can couple to different detectors into a variety of platforms, such as conducting studies on DNA/ RNA point mutation, protein misexpression, and metabolite abnormality. Similarly, microchip capillary electrophoresis (MCE) appears as a very important biomarker screening platform with the merits of high throughput, integration, and miniaturization, which makes it a promising clinical tool. By hyphenated different detectors, or integrated with immunoassay, PCR/LDR and related technologies, MCE can be constructed into diverse platforms used in genomics, proteomics, and metabolomics study for biomarkers discovery. The multiplex biomarker screening approach via CE- or MCE-based platforms is becoming a trend. This paper focuses on studies of cancer biomarkers via CE/MCE platforms, based on the studies published over the past 3 years. Some recent CE applications in the field of cancer study, such as cancer theranostics, are introduced.

Keywords

Biomarker Cancer Capillary electrophoresis Early diagnosis Microchip electrophoresis 

Abbreviations

5-hmC

5-hydroxymethylcytosine

5-hmdC

5-hydroxymethyl-2′-deoxycytidine

AFP

alpha-fetoprotein

AGP

alpha-1-acid glycoprotein

APC

adenomatous polyposis coli

BCAA

branched-chain amino acid

bp

base pair

CE

capillary electrophoresis

CFLDR

continuous-flow ligase detection reaction

CFPCR

continuous-flow polymerase chain reaction

CGE

capillary gel electrophoresis

CSCE

conformation-sensitive capillary electrophoresis

CTC

circulating tumor cell

CTC

circulating tumor cell

CZE

capillary zone electrophoresis

DAD

diode array detector

DHPLC

denaturing high performance liquid chromatography

dLIF

dual-laser-induced fluorescence

EMC

enzyme mismatch cleavage

EMMA

enhanced mismatch mutation analysis

ESI

electrospray ionization

FDA

Food and Drug Administration (US)

FITC

fluorescein isothiocyanate

FRET

fluorescence resonance energy transfer

Hp

haptoglobin phenotype

IA

immunoassay

ICP

inductively coupled plasma

LDR

ligase detection reaction

LEDIF

light-emitting diode-induced fluorescence

LIF

laser-induced fluorescence

LOD

limit of detection

microTAS

micro-total-analysis systems

miRNA

microRNA

MMR

mismatch repair

MRB

moving reaction boundary

MRP

multidrug resistance-associated protein

MS

mass spectrometry

MSI

microsatellite instability

MT

metallothionein

NASH

non-alcoholic steatohepatitis

NGS-CE

non-gel sieving -capillary electrophoresis

NIH

National Institute of Health (US)

PAGE

polyacrylamide gel electrophoresis

PCa

prostate cancer

PCR

polymerase chain reaction

PSA

prostate-specific antigen

REF

restriction endonuclease fingerprinting

RFLP

restriction fragment length polymorphism

SDS

sodium dodecyl sulfate

SSCP

single strand conformation polymorphism

SYBR green 1

a flourescence dye for dsDNA

TGCE

temperature gradient capillary electrophoresis

TOF

time-of-flight

UV

ultraviolet

References

  1. 1.
    Miturski R, Bogusiewicz M, Ciotta C, Bignami M, Gogacz M, Burnouf D (2002) Mismatch repair genes and microsatellite instability as molecular markers for gynecological cancer detection. Exp Biol Med 227(8):579–586Google Scholar
  2. 2.
    Beckmann MW, Niederacher D, Schnürch HG, Gusterson BA, Bender HG (1997) Multistep carcinogenesis of breast cancer and tumour heterogeneity. J Mol Med 75(6):429–439Google Scholar
  3. 3.
    Abramovitz M, Leyland-Jones B (2006) A systems approach to clinical oncology: focus on breast cancer. Proteome Sci 4(5):1–5Google Scholar
  4. 4.
    Henrique R, Jeronimo C (2004) Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur Urol 46:660–669Google Scholar
  5. 5.
    Astoul P, Roca E, Galateau-Salle F, Scherpereel A (2012) Malignant pleural mesothelioma: from the bench to the bedside. Respiration 83(6):481–493Google Scholar
  6. 6.
    Biomarkers definitions working group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95Google Scholar
  7. 7.
    Pavlou MP, Diamandis EP, Blasutig IM (2013) The long journey of cancer biomarkers from the bench to the clinic. Clin Chem 59:147–157Google Scholar
  8. 8.
    Hazelton WD, Luebeck EG (2011) Biomarker-based early cancer detection: is it achievable? Sci Transl Med 3:109–114Google Scholar
  9. 9.
    Baker SG (2009) Improving the biomarker pipeline to develop and evaluate cancer screening tests. J Natl Cancer Inst 101:1–4Google Scholar
  10. 10.
    Rodland RD (2014) As if biomarker discovery isn’t hard enough: the consequences of poorly characterized reagents. Clin Chem 60:290–291Google Scholar
  11. 11.
    Diamandis EP (2010) Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst 102:1462–1467Google Scholar
  12. 12.
    Konforte D, Diamandis EP (2013) Is early detection of cancer with circulating biomarkers feasible? Clin Chem 59:35–37Google Scholar
  13. 13.
    Kern SE (2012) Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res 72:6097–6101Google Scholar
  14. 14.
    Witkowska HE, Hall SC, Fisher SJ (2012) Breaking the bottleneck in the protein biomarker pipeline. Clin Chem 58:321–323Google Scholar
  15. 15.
    Iwasaki H, Nabeshima K, Nishio J, Jimi S, Aoki M, Koga K, Hamasaki M, Hayashil H, Mogil A (2009) Pathology of soft-tissue tumors: daily diagnosis, molecular cytogenetics, and experimental approach. Pathol Int 59(8):501–521Google Scholar
  16. 16.
    López JI (2013) Renal tumors with clear cells. Pathol Res Pract 209(3):137–146Google Scholar
  17. 17.
    Lynch HT, Grady W, Suriano G, Huntsman D (2005) Gastric cancer: new genetic developments. J Surg Oncol 90(3):114–133Google Scholar
  18. 18.
    Schultz IJ, Witjes JA, Swinkels DW, Kok JB (2006) Bladder cancer diagnosis and recurrence prognosis: comparison of markers with emphasis on survivin. Clin Chim Acta 368(1/2):20–32Google Scholar
  19. 19.
    Brunelli M, Manfrin E, Miller K, Eccher A, Gobbo S, Reghellin D, Chilosi M, Remo A, Martignoni G, Menestrina F, Bonetti F (2009) Her-2/neu evaluation in Sister Mary Joseph’s nodule from breast carcinoma: a case report and review of the literature. J Cutan Pathol 36(6):702–705Google Scholar
  20. 20.
    Rennstam K, Hedenfalk I (2006) Molecular signatures of progression from benign epithelium to metastatic breast cancer. Breast Cancer Res 8(4):213–217Google Scholar
  21. 21.
    Oktay MH, Hui P (2012) Molecular pathology as the driving force for personalized oncology. Expert Rev Mol Diagn 12(8):811–813Google Scholar
  22. 22.
    Brandta R, Grützmannb R, Bauerc A, Jesenofskya R, Ringela J, Löhra M, Pilarskyb C, Hoheiselc JD (2004) DNA microarray analysis of pancreatic malignancies. Pancreatology 4:587–597Google Scholar
  23. 23.
    Buchholz M, Gress TM (2003) Application of DNA array analyses in the management of gastrointestinal cancer patients. Dig Dis 21(4):309–314Google Scholar
  24. 24.
    Ohira M, Oba S, Nakamura Y, Hirata T, Ishii S, Nakagawara A (2005) A review of DNA microarray analysis of human neuroblastomas. Cancer Lett 228(1/2):5–11Google Scholar
  25. 25.
    Korf BR, Rehm HL (2005) New approaches to molecular diagnosis. JAMA 309(14):1511–1521Google Scholar
  26. 26.
    Özdemir V, Cho WCS (2012) Theranostics: rethinking postgenomic diagnostics. Expert Rev Mol Diagn 12(8):783–785Google Scholar
  27. 27.
    Abdel-Rahman WM, Mecklin JP, Peltomaki P (2006) The genetics of HNPCC: application to diagnosis and screening. Crit Rev Oncol Hematol 58(3):208–220Google Scholar
  28. 28.
    Anglim P, Alonzo TA, Laird-Offring IA (2008) DNA methylation-based biomarkers for early detection of non-small-cell lung cancer: an update. Mol Cancer 7:81–96Google Scholar
  29. 29.
    Hamada M, Shimase K, Noda K, Tsukagoshi K, Hashimoto M (2013) Development of a ligase detection reaction/CGE method using a LIF dual-channel detection system for direct identification of allelic composition of mutated DNA in a mixed population of excess wild-type DNA. Electrophoresis 34(9/10):1415–1422Google Scholar
  30. 30.
    Szymanska E, Markuszewski MJ, Markuszewski M, Kaliszan R (2010) Altered levels of nucleoside metabolite profiles in urogenital tract cancer measured by capillary electrophoresis. J Pharm Biomed 53(5):1305–1312Google Scholar
  31. 31.
    Thomas F, Hoskins JM, Dvorak A, Tan BR, McLeod HL (2010) Detection of the G > C SNP and rare mutations in the 28-bp repeat of TYMS using gel-based capillary electrophoresis. Pharmacogenomics 11(12):1751–1756Google Scholar
  32. 32.
    Xie XH, Wang R, Jia ZP, Xie H, Zhang AM, Xu J, Wang XL, Wang XH (2011) Determination of mutation of C-myc oncogene in gastric cancer by capillary electrophoresis. Chin J Anal Chem 39(11):1695–1700Google Scholar
  33. 33.
    Wang R, Xie H, Xu YB, Jia ZP, Meng XD, Zhang JH, Ma J, Wang J, Wang XH (2012) Study on detection of mutation DNA fragment in gastric cancer by restriction endonuclease fingerprinting with capillary electrophoresis. Biomed Chromatogr 26(3):393–399Google Scholar
  34. 34.
    Liu Y, Wang R, Gao L, Jia ZP, Xin XT, Xie H, Ma J (2009) Methodology research on P53 gene mutation detection exon 7 of lung cancer by capillary electrophoresis with single strand conformation polymorphism and restriction fragment length polymorphism. Chin J Anal Chem 37(10):1494–1498Google Scholar
  35. 35.
    Yang TH, Ou DL, Hsu C, Huang SH, Chang PL (2012) Comparative microRNA detection from precursor-microRNA-transfected hepatocellular carcinoma cells by capillary electrophoresis with dual-color laser-induced fluorescence. Electrophoresis 33(17):2769–2776Google Scholar
  36. 36.
    Kotani A, Witek MA, Osiri JK, Wang H, Sinville R, Pincas H, Barany F, Soper SA (2012) EndoV/DNA ligase mutation scanning assay using microchip capillary electrophoresis and dual-color laser-induced fluorescence detection. Anal Methods 4(1):58–64Google Scholar
  37. 37.
    Chang PL, Chiu TC, Wang TE, Hu KC, Tsai YH, Hu CC, Bair MJ, Chang HT (2011) Quantitation of branched-chain amino acids in ascites by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Electrophoresis 32(9):1080–1083Google Scholar
  38. 38.
    Kao YY, Liu KT, Huang MF, Chiu TC, Chang HT (2010) Analysis of amino acids and biogenic amines in breast cancer cells by capillary electrophoresis using polymer solutions containing sodium dodecyl sulfate. J Chromatogr A 1217(4):582–587Google Scholar
  39. 39.
    Yang WC, Yu M, Sun XH, Woolley AT (2010) Microdevices integrating affinity columns and capillary electrophoresis for multibiomarker analysis in human serum. Lab Chip 10(19):2527–2533Google Scholar
  40. 40.
    Mbuna J, Kaneta T, Imasaka T (2011) Rapid determination of multidrug resistance-associated protein in cancer cells by capillary electrophoresis immunoassay. J Chromatogr A 1218(25):3923–3927Google Scholar
  41. 41.
    Soliman LC, Hui Y, Hewavitharana AK, Chen DDY (2012) Monitoring potential prostate cancer biomarkers in urine by capillary electrophoresis-tandem mass spectrometry. J Chromatogr A 1267:162–169Google Scholar
  42. 42.
    Chen JL, Fan J, Yan LS, Guo HQ, Xiong JJ, Ren Y, Hu JD (2012) Urine metabolite profiling of human colorectal cancer by capillary electrophoresis mass spectrometry based on MRB. Gastroenterol Res Pract 2012:1–8Google Scholar
  43. 43.
    Lee R, Britz-McKibbin P (2010) Metabolomic studies of radiation-induced apoptosis of human leukocytes by capillary electrophoresis-mass spectrometry and flow cytometry: adaptive cellular responses to ionizing radiation. Electrophoresis 31(14):2328–2337Google Scholar
  44. 44.
    Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M (2010) Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 6(1):78–95Google Scholar
  45. 45.
    Ongay S, Martin-Alvarez PJ, Neususs C, de Frutos M (2010) Statistical evaluation of CZE-UV and CZE-ESI-MS data of intact alpha-1-acid glycoprotein isoforms for their use as potential biomarkers in bladder cancer. Electrophoresis 31(19):3314–3325Google Scholar
  46. 46.
    Cavazza A, Corradini C, Marini M, Roda LG, Valenti A (2011) Capillary electrophoresis coupled with mass spectrometry for the evaluation of Substance P enzymatic degradation by SaOS-2 human osteosarcoma. J Chromatogr B Anal Technol Biomed Life Sci 879(25):2501–2506Google Scholar
  47. 47.
    Lei M, Chen DD, Deng XJ, Liu J, Chen LY, Liu YL, Li B, Yao HC, Xiong GM, Cao Y, Yang JH, Qi C (2012) Dynamic sieving capillary electrophoresis analysis of xylitol selenite-induced apoptosis in SMMC-7221 cells. Biotechnol Lett 34(9):1617–1621Google Scholar
  48. 48.
    Krais AM, Park YJ, Plass C, Schmeiser HH (2011) Determination of genomic 5-hydroxymethyl-2′-deoxycytidine in human DNA by capillary electrophoresis with laser-induced fluorescence. Epigenetics 6(5):560–565Google Scholar
  49. 49.
    Cornelius M, Wörth C, Kliem HC, Wiessler M, Schmeiser HH (2005) Detection and separation of nucleoside-5′-monophosphates of DNA by conjugation with the fluorescent dye BODIPY and capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 26:2591–2598Google Scholar
  50. 50.
    Ma Y, Liu G, Du M, Stayton I (2004) Recent developments in the determination of urinary cancer biomarkers by capillary electrophoresis. Electrophoresis 25:1473–1484Google Scholar
  51. 51.
    Verma M, Wright GL, Hanash SM, GopalSrivastava R, Srivastava S (2001) Proteomic approaches within the NCI early detection research network for the discovery and identification of cancer biomarkers. Ann N Y Acad Sci 945:103–115Google Scholar
  52. 52.
    Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914Google Scholar
  53. 53.
    Vermassen T, Speeckaert M, Lumen N, Rottey S, Delanghe JR (2012) Glycosylation of prostate specific antigen and its potential diagnostic applications. Clin Chim Acta 413:1500–1505Google Scholar
  54. 54.
    Zhu W, Zhang W, Fan LY (2009) Study on mechanism of stacking of zwitterion in high saline biological sample by transient moving reaction boundary created by formic acid buffer and conjugate base in capillary electrophoresis. Talanta 78:1194–1200Google Scholar
  55. 55.
    Li SFY, Krick LJ (2006) Clinical analysis by microchip capillary electrophoresis. Clin Chem 52:137–145Google Scholar
  56. 56.
    Shang F, Guihen E, Glennon JD (2012) Recent advances in miniaturisation–the role of microchip electrophoresis in clinical analysis. Electrophoresis 33(1):105–116Google Scholar
  57. 57.
    Kitagawa F, Otsuka K (2011) Recent progress in microchip electrophoresis-mass spectrometry. J Pharm Biomed 55:668–678Google Scholar
  58. 58.
    Nunes PS, Ohlsson PD, Ordeig O, Kutter JP (2010) Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluid 9:145–161Google Scholar
  59. 59.
    Sikanen T, Tuomikoski S, Ketola RA, Kostiainen R, Franssila S, Kotiaho T (2007) Fully microfabricated and integrated SU-8-based capillary electrophoresis-electrospray ionization microchips for mass spectrometry. Anal Chem 79:9135–9144Google Scholar
  60. 60.
    Dolnik V, Liu S, Jovanovich S (2000) Capillary electrophoresis on microchip. Electrophoresis 21:41–54Google Scholar
  61. 61.
    Molho JI, Herr AE, Mosier BP, Santiago JG, Kenny TW, Brennen RA, Gordon GB, Mohammadi A (2001) Optimization of turn geometries for microchip electrophoresis. Anal Chem 73:1350–1360Google Scholar
  62. 62.
    Zhuang Z, Mitra I, Hussein A, Novotny MV, Mechref Y, Jacobson SC (2011) Microchip electrophoresis of N-glycans on serpentine separation channels with asymmetrically tapered turns. Electrophoresis 32(2):246–253Google Scholar
  63. 63.
    Benhabib M, Chiesl TN, Stockton AM, Scherer JR, Mathies RA (2010) Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers. Anal Chem 82(6):2372–2379Google Scholar
  64. 64.
    Ohno K, Tachikawa K, Manz A (2008) Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis 29:4443–4453Google Scholar
  65. 65.
    Vandaveer WR, Pasas-Farmer SA, Fischer DJ, Frankenfeld CN, Lunte SM (2004) Recent developments in electrochemical detection for microchip capillary electrophoresis. Electrophoresis 25:3528–3549Google Scholar
  66. 66.
    Gawron AJ, Martin RS, Lunte SM (2001) Microchip electrophoretic separation systems for biomedical and pharmaceutical analysis. Eur J Pharm Sci 14:1–12Google Scholar
  67. 67.
    Albrecht JC, Lin JS, Barron A (2011) A 265-base DNA sequencing read by capillary electrophoresis with no separation matrix. Anal Chem 83:509–515Google Scholar
  68. 68.
    Albrecht JC, Kotani A, Lin JS, Soper SA, Barron AE (2013) Simultaneous detection of 19 K-ras mutations by free-solution conjugate electrophoresis of ligase detection reaction products on glass microchips. Electroanalysis 34:590–597Google Scholar
  69. 69.
    Albrecht JC, Kerby MB, Niedringhaus TP, Lin JS, Wang X, Barron AE (2011) Free-solution electrophoretic separations of DNA-drag-tag conjugates on glass microchips with no polymer network and no loss of resolution at increased electric field strength. Electrophoresis 32(10):1201–1208Google Scholar
  70. 70.
    Vandaveer WR IV, Pasas SA, Martin RS, Lunte SM (2002) Recent developments in amperometric detection for microchip capillary electrophoresis. Electrophoresis 23:3667–3677Google Scholar
  71. 71.
    Pumera M, Escarpa A (2011) Electrochemistry in microfluidics and capillary electrophoresis. Electrophoresis 32(8):793–794Google Scholar
  72. 72.
    Pumera M, Escarpa A (2009) Nanomaterials as electrochemical detectors in microfluidics and CE: fFundamentals, designs, and applications. Electrophoresis 30:3315–3323Google Scholar
  73. 73.
    Liu Y, Wang H, Huang J, Yang J, Liu B, Yang P (2009) Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Anal Chim Acta 650(1):77–82Google Scholar
  74. 74.
    Simmons BA, Mcgraw GJ, Davalos RV, Fiechtner GJ, Fintschenko Y, Cummings EB (2006) The development of polymeric devices as dielectrophoretic separators and concentrators. MRS Bull 31:120–124Google Scholar
  75. 75.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76:1571–1579Google Scholar
  76. 76.
    Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25:1695–1704Google Scholar
  77. 77.
    Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y (2005) An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J Microbiol Methods 62:317–326Google Scholar
  78. 78.
    Chuang CH, Huang YW, Wu YT (2011) System-level biochip for impedance sensing and programmable manipulation of bladder cancer cells. Sensors 11(11):11021–11035. doi:10.3390/s111111021 Google Scholar
  79. 79.
    Zamfir AD, Serb A, Vukeli Z, Flangea C, Schiopu C, Fabris D, Kalanj-Bognar S, Capitan F, Sisu E (2011) Assessment of the molecular expression and structure of gangliosides in brain metastasis of lung adenocarcinoma by an advanced approach based on fully automated chip-nanoelectrospray mass spectrometry. J Am Soc Mass Spectrom 22(12):2145–2159Google Scholar
  80. 80.
    Bastiana PJ, Yegnasubramanian S, Palapattua GS, Rogersa CG, Lin X, De Marzo AM, Nelson WG (2004) Molecular biomarker in prostate cancer: the role of CpG island hypermethylation. Eur Urol 46(6):698–708Google Scholar
  81. 81.
    Jain M, Rechache N, Kebebew E (2012) Molecular markers of adrenocortical tumors. J Surg Oncol 106:549–556Google Scholar
  82. 82.
    Wiechec E, Hansen LL (2009) The effect of genetic variability on drug response in conventional breast cancer treatment. Eur J Pharmacol 625:122–130Google Scholar
  83. 83.
    Lim YP (2005) Mining the tumor phosphoproteome for cancer markers. Clin Cancer Res 11:3163–3169Google Scholar
  84. 84.
    Maddocks ODK, Vousden KH (2011) Metabolic regulation by p53. J Mol Med 89:237–245Google Scholar
  85. 85.
    Zinellu A, Sotgia S, De Murtas V, Cossu-Rocca P, De Miglio MR, Muroni MR, Mura A, Uras MG, Contini M, Deiana L, Carru C (2011) Evaluation of methylation degree from formalin-fixed paraffin-embedded DNA extract by field-amplified sample injection capillary electrophoresis with UV detection. Anal Bioanal Chem 399(3):1181–1186Google Scholar
  86. 86.
    Huang MC, Cheong WC, Lim LS, Li MH (2012) A simple, high sensitivity mutation screening using Ampligase mediated T7 endonuclease I and Surveyor nuclease with microfluidic capillary electrophoresis. Electrophoresis 33(5):788–796Google Scholar
  87. 87.
    Zhang HD, Wang XN, Ma Q, Zhou Z, Fang J (2011) Rapid detection of low-abundance K-ras mutation in stools of colorectal cancer patients using chip-based temperature gradient capillary electrophoresis. Lab Investig 91(5):788–798Google Scholar
  88. 88.
    Jiang Y, Kimchi E, Staveley-O’carroll K (2009) Assessment of K-ras mutation: a step toward personalized medicine for patients with colorectal cancer. Cancer 115:3609–3617Google Scholar
  89. 89.
    Liu Y, Wang R, Gao L, Jia ZP, Xie H, Zhang JL, Ma J, Zhang AM, Xie XH (2011) Capillary electrophoresis detection of lung cancer and adjacent normal tissue differences in protein mixture. Acta Chim Sin 69(5):543–547Google Scholar
  90. 90.
    Pound CR, Partin AW, Epstein JI, Walsh PC (1997) Prostate-specific antigen after anatomic radical retropubic prostatectomy. Patterns of recurrence and cancer control. Urol Clin N Am 24:395–406Google Scholar
  91. 91.
    Krejcova L, Fabrik I, Hynek D, Krizkova S, Gumulec J, Ryvolova M, Adam V, Babula P, Trnkova L, Stiborova M, Hubalek J, Masarik M, Binkova H, Eckschlager T, Kizek R (2012) Metallothionein electrochemically determined using Brdicka reaction as a promising blood marker of head and neck malignant tumours. Int J Electrochem Sci 7(3):1767–1784Google Scholar
  92. 92.
    Ryvolova M, Adam V, Kizek R (2012) Analysis of metallothionein by capillary electrophoresis. J Chromatogr A 1226(24):31–42Google Scholar
  93. 93.
    Ryvolova M, Hynek D, Skutkova H, Adam V, Provaznik I, Kizek R (2012) Structural changes in metallothionein isoforms revealed by capillary electrophoresis and Brdicka reaction. Electrophoresis 33(2):270–279Google Scholar
  94. 94.
    Krizkova S, Ryvolova M, Gumulec J, Masarik M, Adam V, Majzlik P, Hubalek J, Provaznik I, Kizek R (2011) Electrophoretic fingerprint metallothionein analysis as a potential prostate cancer biomarker. Electrophoresis 32(15):1952–1961Google Scholar
  95. 95.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314Google Scholar
  96. 96.
    Kami K, Fujimori T, Sato H, Sato M, Yamamoto H, Ohashi Y, Sugiyama N, Ishihama Y, Onozuka H, Ochiai A, Esumi H, Soga T, Tomita M (2013) Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics 9:444–453Google Scholar
  97. 97.
    Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69:4918–4925Google Scholar
  98. 98.
    Wang SF, Yang P, Zhao XP (2009) Amino acid profile determination in the urine of bladder cancer patients by CE-MS with on-Line pH-mediated stacking and pattern recognition. Chromatographia 70:1479–1484Google Scholar
  99. 99.
    Smith AJ, Stern HS, Penner M, Hay K, Mirei A, Bapat BV, Gallinger S (1994) Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res 54:5527–5530Google Scholar
  100. 100.
    Breivik J, Meling GI, Spurkland A, Rognum TO, Gaudernack G (1994) K-ras mutation in colorectal cancer: relations to patient age, sex, and tumour location. Br J Cancer 69:367–371Google Scholar
  101. 101.
    Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M (1987) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 327:298–303Google Scholar
  102. 102.
    Hashimoto M, Barany F, Soper SA (2006) Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations. Biosens Bioelectron 21:1915–1923Google Scholar
  103. 103.
    Thomas G, Sinville R, Sutton S, Farquar H, Hammer RP, Sper SA, Cheng Y, Barany F (2004) Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA. Electrophoresis 25:1668–1677Google Scholar
  104. 104.
    Khanna M, Cao WG, Zirvi M, Paty P, Barany F (1999) Ligase detection reaction for identification of low abundance mutations. Clin Biochem 32:287–290Google Scholar
  105. 105.
    Hashimoto M, Barany F, Xu F, Soper SA (2007) Serial processing of biological reactions using flow-through microfluidic devices: coupled PCR/LDR for the detection of low-abundant DNA point mutations. Analyst 132:913–921Google Scholar
  106. 106.
    Lankisch TO, Metzger J, Negm AA, Vosskuhl K, Schiffer E, Siwy J, Weismuller TJ, Schneider AS, Thedieck K, Baumeister R, Zurbig P, Weissinger EM, Manns MP, Mischak H, Wedemeyer J (2011) Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Hepatology 53(3):875–884Google Scholar
  107. 107.
    Metzger J, Negm AA, Plentz RR, Weismuller TJ, Wedemeyer J, Karlsen TH, Dakna M, Mullen W, Mischak H, Manns MP, Lankisch TO (2013) Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut 62(1):122–130Google Scholar
  108. 108.
    Huang B, Huang C, Liu P, Wang F, Na N, Ouyang J (2011) Fast haptoglobin phenotyping based on microchip electrophoresis. Talanta 85(1):333–338Google Scholar
  109. 109.
    Blomme B, Francque S, Trepo E, Libbrecht L, Vanderschaeghe D, Verrijken A, Pattyn P, Nieuwenhove YV, Putte DV, Geerts A, Colle I, Delanghe J, Moreno C, Gaal LV, Callewaert N, Vlierberghe HV (2012) N-glycan based biomarker distinguishing nonalcoholic steatohepatitis from steatosis independently of fibrosis. Dig Liver Dis 44(4):315–322Google Scholar
  110. 110.
    Sato S, Toyota J, Kagebayashi C, Kurosawa T, Watanabe M, Satomura S (2010) Evaluation of a new, microfluidic chip-based immunoassay for measurement of AFP-L3. Rinsho Byori 58(12):1155–1161Google Scholar
  111. 111.
    Xu XM, Qian JC, Cai Z, Tang T, Wang P, Zhang KH, Deng ZL, Cai JP (2012) DNA alterations of microsatellite DNA, p53, APC, and K-ras in chinese colorectal cancer patients. Eur J Clin Investig 42(7):751–759Google Scholar
  112. 112.
    Nikolic A, Kojic S, Knezevic S, Krivokapic Z, Ristanovic M, Radojkovic D (2011) Structural and functional analysis of SMAD4 gene promoter in malignant pancreatic and colorectal tissues: detection of two novel polymorphic nucleotide repeats. Cancer Epidemiol 35(3):265–271Google Scholar
  113. 113.
    Wu S, Qian X, Yu X, Sheng H, Lu B (2012) Microwave heating of long-term formalin-fixed surgical pathology specimens improves quality of extracted DNA. Appl Immunohistochem Mol Morphol 20(5):512–517Google Scholar
  114. 114.
    Zhang HD, Wang XN, Zhou Z, Ma Q, Fang J (2010) Mutation detection of K-ras gene in paraffin-embedded colorectal cancer tissues by using chip-based TGCE. Prog Biochem Biophys 37(7):794–800Google Scholar
  115. 115.
    Dharmasiri U, Njoroge SK, Witek MA, Adebiyi MG, Kamande JW, Hupert ML, Barany F, Soper SA (2011) High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem 83(6):2301–2309Google Scholar
  116. 116.
    Houdayer C, Moncoutier V, Champ J, Weber J, Viovy JL, Stoppa-Lyonnet D (2010) Enhanced mismatch mutation analysis: simultaneous detection of point mutations and large scale rearrangements by capillary electrophoresis, application to BRCA1 and BRCA2. Methods Mol Biol 653:147–180Google Scholar
  117. 117.
    Mattocks CJ, Watkins G, Ward D, Janssens T, Bosgoed EAJ, van der Donk K, Ligtenberg MJ, Pot B, Theelen J, Cross NCP, Scheffer H, Matthijs G (2010) Interlaboratory diagnostic validation of conformation-sensitive capillary electrophoresis for mutation scanning. Clin Chem 56(4):593–602Google Scholar
  118. 118.
    Dodgson BJ, Mazouchi A, Wegman DW, Gradinaru CC, Krylov SN (2012) Detection of a thousand copies of miRNA without enrichment or modification. Anal Chem 84(13):5470–5474Google Scholar
  119. 119.
    Caux-Moncoutier V, Castera L, Tirapo C, Michaux D, Remon MA, Lauge A, Rouleau E, De Pauw A, Buecher B, Gauthier-Villars M, Viovy JL, Stoppa-Lyonnet D, Houdayer C (2011) EMMA, a cost- and time-effective diagnostic method for simultaneous detection of point mutations and large-scale genomic rearrangements: application to BRCA1 and BRCA2 in 1525 patients. Hum Mutat 32(3):325–334Google Scholar
  120. 120.
    Garrido-Medina R, Diez-Masa JC, de Frutos M (2011) CE methods for analysis of isoforms of prostate-specific antigen compatible with online derivatization for LIF detection. Electrophoresis 32(15):2036–2043Google Scholar
  121. 121.
    Ye FG, Shi M, Huang Y, Zhao SL (2010) Noncompetitive immunoassay for carcinoembryonic antigen in human serum by microchip electrophoresis for cancer diagnosis. Clin Chim Acta 411(15/16):1058–1062Google Scholar
  122. 122.
    Hou JX, Yang XQ, Chen C, Jiang Q, Yang GL, Li Y (2011) Screening the gastric cancer related tumor markers from multi-tumor markers protein chip with kappa coefficient and cost-effectiveness analysis. Hepatogastroenterology 58(106):632–636Google Scholar
  123. 123.
    Fan B, Xiong B (2011) Investigation of serum tumor markers in the diagnosis of gastric cancer. Hepatogastroenterology 58:239–245Google Scholar
  124. 124.
    Zhao S, Yuan H, Xiao D (2006) Optical fiber light-emitting diode-induced fluorescence detection for capillary electrophoresis. Electrophoresis 27:461–467Google Scholar
  125. 125.
    Ramsay LM, Dickerson JA, Dovichi NJ (2009) Attomole protein analysis by CIEF with LIF detection. Electrophoresis 30:297–302Google Scholar
  126. 126.
    Tamura Y, Igarashi M, Kawai H, Suda T, Satomura S, Aoyagi Y (2010) Clinical advantage of highly sensitive on-chip immunoassay for fucosylated fraction of alpha-fetoprotein in patients with hepatocellular carcinoma. Dig Dis Sci 55(12):3576–3583Google Scholar
  127. 127.
    Toyoda H, Kumada T, Tada T, Kaneoka Y, Maeda A, Kanke F, Satomura S (2012) Clinical utility of highly sensitive Lens culinaris agglutinin-reactive alpha-fetoprotein in hepatocellular carcinoma patients with alpha-fetoprotein <20 ng/mL. Cancer Sci 102(5):1025–1031Google Scholar
  128. 128.
    Franzen U, Nguyen TT, Vermehren C, Gammelgaard B, Ostergaard J (2011) Characterization of a liposome-based formulation of oxaliplatin using capillary electrophoresis: encapsulation and leakage. J Pharm Biomed 55(1):16–22Google Scholar
  129. 129.
    Provaznikova D, Kumstyrova T, Kotlin R, Salaj P, Matoska V, Hrachovinova I, Rittich S (2008) High resolution melting analysis for detection of MYH9 mutations. Platelets 19:471–475Google Scholar
  130. 130.
    Davies H, Dicks E, Stephens P, Cox C, Teague J, Greenman C (2006) High throughput DNA sequence variant detection by conformation sensitive capillary electrophoresis and automated peak comparison. Genomics 87:427–432Google Scholar
  131. 131.
    Vermeer S, Meijer R, Hofste T, Bodmer D, Bosgoed E, Cremers P, Kremer B, Knoers N, Scheffer H (2009) Design and validation of a conformation sensitive capillary electrophoresis-based mutation scanning system and automated data analysis of the more than 15 kbp-spanning coding sequence of the SACS gene. J Mol Diagn 11:514–523Google Scholar
  132. 132.
    Chuang CH, Huang YW, Wu YT (2012) Dielectrophoretic chip with multilayer electrodes and micro-cavity array for trapping and programmably releasing single cells. Biomed Microdevices 14(2):271–278Google Scholar
  133. 133.
    Ozdemir V, Bryn W, Glatt SJ, Tsuang MT, Lohr JB, Reist C (2006) Shifting emphasis from pharmacogenomics to theranostics. Nat Biotechnol 24:942–946Google Scholar
  134. 134.
    Shastry BS (2006) Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J 6:16–21Google Scholar
  135. 135.
    Jaffee EM, Schutte M, Gossett J, Morsberger LA, Adler AJ, Thomas M, Greten TF, Hruban RH (1998) Development and characterization of a cytokine-secreting pancreatic adenocarcinoma vaccine from primary tumors for use in clinical trials. Cancer J Sci Am 4:194–203Google Scholar
  136. 136.
    Lin MT, Tseng LH, Kamiyama H, Kamiyama M, Lim P, Hidalgo M, Wheelan S, Eshleman J (2010) Quantifying the relative amount of mouse and human DNA in cancer xenografts using species-specific variation in gene length. Biotechniques 48(3):211–218Google Scholar
  137. 137.
    Rudloff U, Bhanot U, Gerald W, Klimstra DS, Jarnagin WR, Brennan MF, Allen PJ (2010) Biobanking of human pancreas cancer tissue: impact of ex-vivo procurement times on RNA quality. Ann Surg Oncol 17(8):2229–2236Google Scholar
  138. 138.
    Sun ZH, Fu XL, Zhang L, Yang X, Liu F, Hu G (2004) A protein chip system for parallel analysis of multi-tumor markers and its application in cancer detection. Anticancer Res 24:1159–1166Google Scholar
  139. 139.
    Chen C, Chen LQ, Yang GL, Li Y (2008) The application of C12 biochip in the diagnosis and monitoring of colorectal cancer: systematic evaluation and suggestion for improvement. J Postgrad Med 54:186–190Google Scholar
  140. 140.
    Mitra I, Zhuang Z, Zhang Y, Yu CY, Hammoud ZT, Tang H, Mechref Y, Jacobson SC (2012) N-glycan profiling by microchip electrophoresis to differentiate disease states related to esophageal adenocarcinoma. Anal Chem 84(8):3621–3627Google Scholar
  141. 141.
    Evangelista RA, Liu MS, Chen FT (1995) Characterization of 9-aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 67:2239–2245Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemistry and the Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Pharmacy CollegeDali UniversityDaliChina

Personalised recommendations