Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 14, pp 3335–3344 | Cite as

Multiplex detection of disease biomarkers using SERS molecular sentinel-on-chip

  • Hoan T. Ngo
  • Hsin-Neng Wang
  • Thomas Burke
  • Geoffrey S. Ginsburg
  • Tuan Vo-Dinh
Research Paper
Part of the following topical collections:
  1. Multiplex Platforms in Diagnostics and Bioanalytics

Abstract

Developing techniques for multiplex detection of disease biomarkers is important for clinical diagnosis. In this work, we have demonstrated for the first time the feasibility of multiplex detection of genetic disease biomarkers using the surface-enhanced Raman scattering (SERS)-based molecular sentinel-on-chip (MSC) diagnostic technology. The molecular sentinel (MS) sensing mechanism is based upon the decrease of SERS intensity when Raman labels tagged at 3′-ends of MS nanoprobes are physically displaced from the nanowave chip’s surface upon DNA hybridization. The use of bimetallic layer (silver and gold) for the nanowave fabrication was investigated. SERS measurements were performed immediately following a single hybridization reaction between the target single-stranded DNA sequences and the complementary MS nanoprobes immobilized on the nanowave chip without requiring target labeling (i.e., label-free), secondary hybridization, or post-hybridization washing, thus shortening the assay time and reducing cost. Two nucleic acid transcripts, interferon alpha-inducible protein 27 and interferon-induced protein 44-like, are used as model systems for the multiplex detection concept demonstration. These two genes are well known for their critical role in host immune response to viral infection and can be used as molecular signature for viral infection diagnosis. The results indicate the potential of the MSC technology for nucleic acid biomarker multiplex detection.

Figure

Scheme of two-multiplex detection of complementary target ssDNA sequences using SERS-based molecular sentinel-on-chip diagnostic technology

Keywords

Multiplex DNA detection Surface-enhanced Raman scattering Molecular sentinel Molecular sentinel-on-chip Nanowave Metal film over nanosphere 

Notes

Acknowledgments

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA-N66001-09-C-2082) and the Wallace H. Coulter Foundation Endowment. Hoan Thanh Ngo is supported by a Fellowship from the Vietnam Education Foundation. A special thanks to Andrew M. Fales for helpful suggestions and proofreading this manuscript.

References

  1. 1.
    Cordray MS, Richards-Kortum RR (2012) Review: Emerging Nucleic Acid Based Tests for Point-of- Care Detection of Malaria. Am J Trop Med Hyg 87(2):223–230CrossRefGoogle Scholar
  2. 2.
    Mancuso M, Jiang L, Cesarman E, Erickson D (2013) Multiplexed colorimetric detection of Kaposi's sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles. Nanoscale 5(4):1678–1686CrossRefGoogle Scholar
  3. 3.
    Han SH, Park LS, Lee JS (2012) Hierarchically branched silver nanostructures (HBAgNSs) as surface plasmon regulating platforms for multiplexed colorimetric DNA detection. J Mater Chem 22(38):20223–20231CrossRefGoogle Scholar
  4. 4.
    Stoeva SI, Lee JS, Thaxton CS, Mirkin CA (2006) Multiplexed DNA detection with biobarcoded nanoparticle probes. Angew Chem Int Ed 45(20):3303–3306CrossRefGoogle Scholar
  5. 5.
    Prigodich AE, Randeria PS, Briley WE, Kim NJ, Daniel WL, Giljohann DA, Mirkin CA (2012) Multiplexed Nanoflares: mRNA Detection in Live Cells. Anal Chem 84(4):2062–2066CrossRefGoogle Scholar
  6. 6.
    Li YG, Cu YTH, Luo D (2005) Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nat Biotechnol 23(7):885–889CrossRefGoogle Scholar
  7. 7.
    Su S, Wei XP, Zhong YL, Guo YY, Su YY, Huang Q, Lee ST, Fan CH, He Y (2012) Silicon Nanowire- Based Molecular Beacons for High-Sensitivity and Sequence-Specific DNA Multiplexed Analysis. ACS Nano 6(3):2582–2590CrossRefGoogle Scholar
  8. 8.
    Meade SO, Chen MY, Sailor MJ, Miskelly GM (2009) Multiplexed DNA Detection Using Spectrally Encoded Porous SiO2 Photonic Crystal Particles. Anal Chem 81(7):2618–2625CrossRefGoogle Scholar
  9. 9.
    Mirasoli M, Bonvicini F, Dolci LS, Zangheri M, Gallinella G, Roda A (2013) Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes. Anal Bioanal Chem 405(2–3):1139–1143CrossRefGoogle Scholar
  10. 10.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) Surface-Enhanced Raman-Scattering. J Phys Condens Matter 4(5):1143–1212CrossRefGoogle Scholar
  11. 11.
    Vo-Dinh T (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. TrAC Trends Anal Chem 17(8–9):557–582CrossRefGoogle Scholar
  12. 12.
    Schatz GC (1984) Theoretical-Studies of Surface Enhanced Raman-Scattering. Acc Chem Res 17(10):370–376CrossRefGoogle Scholar
  13. 13.
    Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106CrossRefGoogle Scholar
  14. 14.
    Kneipp J, Kneipp H, Kneipp K (2008) SERS - a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060CrossRefGoogle Scholar
  15. 15.
    Otto A, Bruckbauer A, Chen YX (2003) On the chloride activation in SERS and single molecule SERS. J Mol Struct 661:501–514CrossRefGoogle Scholar
  16. 16.
    Xu HX, Bjerneld EJ, Kall M, Borjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83(21):4357–4360CrossRefGoogle Scholar
  17. 17.
    Vo-Dinh T, Hiromoto MYK, Begun GM, Moody RL (1984) Surface-enhanced Raman spectrometry for trace organic analysis. Anal Chem 56(9):1667–1670CrossRefGoogle Scholar
  18. 18.
    Meier M, Wokaun A, Vo-Dinh T (1985) Silver Particles on Stochastic Quartz Substrates Providing Tenfold Increase in Raman Enhancement. J Phys Chem 89(10):1843–1846CrossRefGoogle Scholar
  19. 19.
    Vo-Dinh T, Meier M, Wokaun A (1986) Surface-enhanced Raman spectrometry with silver particles on stochastic-post substrates. Anal Chim Acta 181:139–148CrossRefGoogle Scholar
  20. 20.
    Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang HN, Misra V, Gerhold MD (2010) Plasmonic Nanoparticles and Nanowires: Design, Fabrication and Application in Sensing. J Phys Chem C 114(16):7480–7488CrossRefGoogle Scholar
  21. 21.
    Yuan H, Liu Y, Fales AM, Li YL, Liu J, Vo-Dinh T (2012) Quantitative Surface-Enhanced Resonant Raman Scattering Multiplexing of Biocompatible Gold Nanostars for in Vitro and ex Vivo Detection. Anal Chem 85(1):208–212CrossRefGoogle Scholar
  22. 22.
    Ngo HT, Wang H-N, Fales AM, Vo-Dinh T (2013) Label-Free DNA Biosensor Based on SERS Molecular Sentinel on Nanowave Chip. Anal Chem 85(13):6378–6383CrossRefGoogle Scholar
  23. 23.
    Wabuyele MB, Vo-Dinh T (2005) Detection of human immunodeficiency virus type 1 DNA sequence using plasmonics nanoprobes. Anal Chem 77(23):7810–7815CrossRefGoogle Scholar
  24. 24.
    Wang HN, Vo-Dinh T (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20(6)Google Scholar
  25. 25.
    Wang H-N, Fales AM, Zaas AK, Woods CW, Burke T, Ginsburg GS, Vo-Dinh T (2013) Surfaceenhanced Raman scattering molecular sentinel nanoprobes for viral infection diagnostics. Anal Chim Acta 786:153–158CrossRefGoogle Scholar
  26. 26.
    JournaltitleGoogle Scholar
  27. 27.
    Vo-Dinh T, Wang HN, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102Google Scholar
  28. 28.
    Khoury CG, Vo-Dinh T (2012) Plasmonic "Nanowave" Substrates for SERS: Fabrication and Numerical Analysis. J Phys Chem CGoogle Scholar
  29. 29.
    Dick LA, McFarland AD, Haynes CL, Van Duyne RP (2001) Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS):ı Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss. J Phys Chem B 106(4):853–860CrossRefGoogle Scholar
  30. 30.
    Ma K, Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP (2011) In Vivo, Transcutaneous Glucose Sensing Using Surface-Enhanced Spatially Offset Raman Spectroscopy: Multiple Rats, Improved Hypoglycemic Accuracy, Low Incident Power, and Continuous Monitoring for Greater than 17 Days. Anal Chem 83(23):9146–9152CrossRefGoogle Scholar
  31. 31.
    Fu CY, Kho KW, Dinish US, Koh ZY, Malini O (2012) Enhancement in SERS intensity with hierarchical nanostructures by bimetallic deposition approach. J Raman Spectrosc 43(8):977–985CrossRefGoogle Scholar
  32. 32.
    Lin W-C, Liao L-S, Chen Y-H, Chang H-C, Tsai D, Chiang H-P (2011) Size Dependence of Nanoparticle-SERS Enhancement from Silver Film over Nanosphere (AgFON) Substrate. Plasmonics 6(2):201–206CrossRefGoogle Scholar
  33. 33.
    Masson J-F, Gibson KF, Provencher-Girard A (2010) Surface-Enhanced Raman Spectroscopy Amplification with Film over Etched Nanospheres. J Phys Chem C 114(51):22406–22412CrossRefGoogle Scholar
  34. 34.
    Farcau C, Astilean S (2010) Mapping the SERS Efficiency and Hot-Spots Localization on Gold Film over Nanospheres Substrates. J Phys Chem C 114(27):11717–11722CrossRefGoogle Scholar
  35. 35.
    Cullum BM, Li H, Hankus ME, Schiza MV (2007) Characterization of multilayer-enhanced surfaceenhanced raman scattering (SERS) substrates and their potential for SERS nanoimaging. NanoBiotechnology 3(1):1–11CrossRefGoogle Scholar
  36. 36.
    Li Q, Kuo CW, Yang Z, Chen P, Chou KC (2009) Surface-enhanced IR-visible sum frequency generation vibrational spectroscopy. Phys Chem Chem Phys 11(18):3436–3442CrossRefGoogle Scholar
  37. 37.
    Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25(3):373–381CrossRefGoogle Scholar
  38. 38.
    Zaas AK, Chen M, Varkey J, Veldman T, Hero AO, Lucas J, Huang Y, Turner R, Gilbert A, Lambkin-Williams R, Oien NC, Nicholson B, Kingsmore S, Carin L, Woods CW, Ginsburg GS (2009) Gene Expression Signatures Diagnose Influenza and Other Symptomatic Respiratory Viral Infections in Humans. Cell Host Microbe 6(3):207–217CrossRefGoogle Scholar
  39. 39.
    Woods CW, McClain MT, Chen MH, Zaas AK, Nicholson BP, Varkey J, Veldman T, Kingsmore SF, Huang YS, Lambkin-Williams R, Gilbert AG, Hero AO, Ramsburg E, Glickman S, Lucas JE, Carin L, Ginsburg GS (2013) A Host Transcriptional Signature for Presymptomatic Detection of Infection in Humans Exposed to Influenza H1N1 or H3N2. PLoS One 8(1)Google Scholar
  40. 40.
    Zaas AK, Burke T, Chen M, McClain M, Nicholson B, Veldman T, Tsalik EL, Fowler V, Rivers EP, Otero R, Kingsmore SF, Voora D, Lucas J, Hero AO, Carin L, Woods CW, Ginsburg GS (2013) A Host- Based RT-PCR Gene Expression Signature to Identify Acute Respiratory Viral Infection. Sci Transl Med 5(203):203ra126Google Scholar
  41. 41.
    Li JM, Wei C, Ma WF, An Q, Guo J, Hu J, Wang CC (2012) Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core-shell nanospheres. J Mater Chem 22(24):12100–12106CrossRefGoogle Scholar
  42. 42.
    Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned Multiplex Pathogen DNA Detection by Au Particle-on-Wire SERS Sensor. Nano Lett 10(4):1189–1193CrossRefGoogle Scholar
  43. 43.
    Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540CrossRefGoogle Scholar
  44. 44.
    Faulds K, Jarvis R, Smith WE, Graham D, Goodacre R (2008) Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst 133(11):1505–1512CrossRefGoogle Scholar
  45. 45.
    Faulds K, McKenzie F, Smith WE, Graham D (2007) Quantitative simultaneous multianalyte detection of DNA by dual-wavelength surface-enhanced resonance Raman scattering. Angew Chem Int Ed 46(11):1829–1831CrossRefGoogle Scholar
  46. 46.
    Wei X, Su S, Guo Y, Jiang X, Zhong Y, Su Y, Fan C, Lee S-T, He Y (2013) A Molecular Beacon- Based Signal-Off Surface-Enhanced Raman Scattering Strategy for Highly Sensitive, Reproducible, and Multiplexed DNA Detection. Small 9(15):2493–2499CrossRefGoogle Scholar
  47. 47.
    Zhang ZL, Wen YQ, Ma Y, Luo J, Jiang L, Song YL (2011) Mixed DNA-functionalized nanoparticle probes for surface-enhanced Raman scattering-based multiplex DNA detection. ChemComm 47(26):7407–7409Google Scholar
  48. 48.
    Herne TM, Tarlov MJ (1997) Characterization of DNA Probes Immobilized on Gold Surfaces. J Am Chem Soc 119(38):8916–8920CrossRefGoogle Scholar
  49. 49.
    Chaloupka A, Simek P, Sutta P, Svorcik V (2010) Influence of substrate on properties of gold nanolayers. Mater Lett 64(11):1316–1318CrossRefGoogle Scholar
  50. 50.
    Haynes CL, Van Duyne RP (2001) Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105(24):5599–5611CrossRefGoogle Scholar
  51. 51.
    Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3(8):1087–1090CrossRefGoogle Scholar
  52. 52.
    Greeneltch NG, Blaber MG, Henry A-I, Schatz GC, Van Duyne RP (2013) Immobilized Nanorod Assemblies: Fabrication and Understanding of Large Area Surface-Enhanced Raman Spectroscopy Substrates. Anal Chem 85(4):2297–2303CrossRefGoogle Scholar
  53. 53.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-Scanned Surface- Enhanced Raman Excitation Spectroscopy. J Phys Chem B 109(22):11279–11285CrossRefGoogle Scholar
  54. 54.
    Hsieh H-Y, Xiao J-L, Lee C-H, Huang T-W, Yang C-S, Wang P-C, Tseng F-G (2011) Au-Coated Polystyrene Nanoparticles with High-Aspect-Ratio Nanocorrugations via Surface-Carboxylation-Shielded Anisotropic Etching for Significant SERS Signal Enhancement. J Phys Chem C 115(33):16258–16267CrossRefGoogle Scholar
  55. 55.
    McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Appl Spectrosc 65(8):825–837CrossRefGoogle Scholar
  56. 56.
    Dougan JA, Faulds K (2012) Surface enhanced Raman scattering for multiplexed detection. Analyst 137(3):545–554CrossRefGoogle Scholar
  57. 57.
    Li M, Cushing SK, Liang H, Suri S, Ma D, Wu N (2013) Plasmonic Nanorice Antenna on Triangle Nanoarray for Surface-Enhanced Raman Scattering Detection of Hepatitis B Virus DNA. Anal Chem 85(4):2072–2078CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hoan T. Ngo
    • 1
    • 2
  • Hsin-Neng Wang
    • 1
    • 2
  • Thomas Burke
    • 3
  • Geoffrey S. Ginsburg
    • 2
    • 3
  • Tuan Vo-Dinh
    • 1
    • 2
    • 4
  1. 1.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  2. 2.Fitzpatrick Institute for PhotonicsDuke UniversityDurhamUSA
  3. 3.Duke Institute for Genome Sciences & PolicyDuke UniversityDurhamUSA
  4. 4.Department of ChemistryDuke UniversityDurhamUSA

Personalised recommendations