Advertisement

Analytical and Bioanalytical Chemistry

, Volume 406, Issue 23, pp 5669–5676 | Cite as

Determination of neurotransmitters and their metabolites using one- and two-dimensional liquid chromatography with acidic potassium permanganate chemiluminescence detection

  • Brendan J. Holland
  • Xavier A. ConlanEmail author
  • Paul G. Stevenson
  • Susannah Tye
  • Ashlie Reker
  • Neil W. Barnett
  • Jacqui L. Adcock
  • Paul S. FrancisEmail author
Research Paper
Part of the following topical collections:
  1. Analytical Bioluminescence and Chemiluminescence

Abstract

High-performance liquid chromatography with chemiluminescence detection based on the reaction with acidic potassium permanganate and formaldehyde was explored for the determination of neurotransmitters and their metabolites. The neurotransmitters norepinephrine and dopamine were quantified in the left and right hemispheres of rat hippocampus, nucleus accumbens and prefrontal cortex, and the metabolites vanillylmandelic acid, 3,4-dihydrophenylacetic acid, 5-hydroxyindole-3-acetic acid and homovanillic acid were identified in human urine. Under optimised chemiluminescence reagent conditions, the limits of detection for these analytes ranged from 2.5 × 10−8 to 2.5 × 10−7 M. For the determination of neurotransmitter metabolites in urine, a two-dimensional high-performance liquid chromatography (2D-HPLC) separation operated in heart-cutting mode was developed to overcome the peak capacity limitations of the one-dimensional separation. This approach provided the greater separation power of 2D-HPLC with analysis times comparable to conventional one-dimensional separations.

Figure

2D-HPLC separation and permanganate chemiluminescence detection of neurotransmitter metabolites

Keywords

Chemiluminescence Neurotransmitters Neurotransmitter metabolites Brain Urine Two-dimensional high-performance liquid chromatography 

References

  1. 1.
    Rosano TG, Whitley RJ (2006) Catecholamines and serotonin. In: Burtis CA, Ashwood ER, Bruns DE (eds) Tietz textbook of clinical chemistry and molecular diagnostics, 4th edn. Elsevier, St. Louis, pp 1033–1074Google Scholar
  2. 2.
    Heales SJR (2008) Biogenic amines. In: Blau N, Duran M, Gibson KM (eds) Laboratory guide to the methods in biochemical genetics. Springer, Heidelberg, pp 703–715CrossRefGoogle Scholar
  3. 3.
    Nguyen AT, Aerts T, Van Dam D, De Deyn PP (2010) Biogenic amines and their metabolites in mouse brain tissue: development, optimization and validation of an analytical HPLC method. J Chromatogr B 878(29):3003–3014CrossRefGoogle Scholar
  4. 4.
    Huang T, Kissinger PT (1996) Liquid chromatographic determination of serotonin in homogenized dog intestine and rat brain tissue using a 2 mm i.d. PEEK column. Curr Sep 14(3/4):114–119Google Scholar
  5. 5.
    Hyland K (2003) The lumbar puncture for diagnosis of pediatric neurotransmitter diseases. Ann Neurol 54(S6):S13–S17CrossRefGoogle Scholar
  6. 6.
    Umegaki H, Tamaya N, Shinkai T, Iguchi A (2000) The metabolism of plasma glucose and catecholamines in Alzheimer’s disease. Exp Gerontol 35(9–10):1373–1382CrossRefGoogle Scholar
  7. 7.
    Tajima T, Endo H, Suzuki Y, Ikari H, Gotoh M, Iguchi A (1996) Immobilization stress-induced increase of hippocampal acetylcholine and of plasma epinephrine, norepinephrine and glucose in rats. Brain Res 720(1–2):155–158CrossRefGoogle Scholar
  8. 8.
    Vogel WH, Miller J, DeTurck KH, Routzahn BK Jr (1984) Effects of psychoactive drugs on plasma catecholamines during stress in rats. Neuropharmacology 23(9):1105–1108CrossRefGoogle Scholar
  9. 9.
    Liu G, Chen J, Ma Y (2004) Simultaneous determination of catecholamines and polyamines in PC-12 cell extracts by micellar electrokinetic capillary chromatography with ultraviolet absorbance detection. J Chromatogr B 805(2):281–288CrossRefGoogle Scholar
  10. 10.
    Qu Y, Moons L, Vandesande F (1997) Determination of serotonin, catecholamines and their metabolites by direct injection of supernatants from chicken brain tissue homogenate using liquid chromatography with electrochemical detection. J Chromatogr B 704(1–2):351–358CrossRefGoogle Scholar
  11. 11.
    Musshoff F, Schmidt P, Dettmeyer R, Priemer F, Jachau K, Madea B (2000) Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci Int 113(1):359–366CrossRefGoogle Scholar
  12. 12.
    Ahmad A, Rasheed N, Ashraf GM, Kumar R, Banu N, Khan F, Al-Sheeha M, Palit G (2012) Brain region specific monoamine and oxidative changes during restraint stress. Can J Neurol Sci 39(3):311–318Google Scholar
  13. 13.
    Parrot S, Neuzeret PC, Denoroy L (2011) A rapid and sensitive method for the analysis of brain monoamine neurotransmitters using ultra-fast liquid chromatography coupled to electrochemical detection. J Chromatogr B 879(32):3871–3878CrossRefGoogle Scholar
  14. 14.
    Soblosky JS, Colgin LL, Parrish CM, Davidson JF, Carey ME (1998) Procedure for the sample preparation and handling for the determination of amino acids, monoamines and metabolites from microdissected brain regions of the rat. J Chromatogr B 712(1–2):31–41CrossRefGoogle Scholar
  15. 15.
    Tanaka M, Yasuko K, Ryoichi N, Yoshishige I, Shigeko T, Nobuyuki N (1982) Time-related differences in noradrenaline turnover in rat brain regions by stress. Pharmacol Biochem Behav 16(2):315–319CrossRefGoogle Scholar
  16. 16.
    Viña J, Romero FJ, Saez GT, Pallardó FV (1983) Effects of cysteine and N-acetyl cysteine on GSH content of brain of adult rats. Cell Mol Life Sci 39(2):164–165CrossRefGoogle Scholar
  17. 17.
    Narasimhachari N, Leiner K, Brown C (1975) The simultaneous determination by selected ion monitoring of the levels of homovanillic, isohomovanillic, 3,4-dihydroxyphenylacetic and 3-methoxy-4-hydroxymandelic acids in single biological samples. Clin Chim Acta 62(2):245–253CrossRefGoogle Scholar
  18. 18.
    Ater JL, Gardner KL, Foxhall LE, Therrell BL, Bleyer WA (1998) Neuroblastoma screening in the United States. Cancer 82(8):1593–1602CrossRefGoogle Scholar
  19. 19.
    Chan ECY, Ho PC (2000) High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometric method for the analysis of catecholamines and metanephrines in human urine. Rapid Commun Mass Spec 14(21):1959–1964CrossRefGoogle Scholar
  20. 20.
    Hollenbach E, Schulz C, Lehnert H (1998) Rapid and sensitive determination of catecholamines and the metabolite 3-methoxy-4-hydroxyphen-ethyleneglycol using HPLC following novel extraction procedures. Life Sci 63(9):737–750CrossRefGoogle Scholar
  21. 21.
    Odink J, Korthals H, Knijff JH (1988) Simultaneous determination of the major acidic metabolites of catecholamines and serotonin in urine by liquid chromatography with electrochemical detection after a one-step sample clean-up on Sephadex G-10; influence of vanilla and banana ingestion. J Chromatogr B 424:273–283CrossRefGoogle Scholar
  22. 22.
    Feldman JM, Lee EM (1985) Serotonin content of foods: effect on urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr 42(4):639–643Google Scholar
  23. 23.
    Lynn-Bullock CP, Welshhans K, Pallas SL, Katz PS (2004) The effect of oral 5-HTP administration on 5-HTP and 5-HT immunoreactivity in monoaminergic brain regions of rats. J Chem Neuroanat 27(2):129–138CrossRefGoogle Scholar
  24. 24.
    Duncan MW, Compton P, Lazarus L, Smythe GA (1988) Measurement of norepinephrine and 3,4-dihydroxyphenylglycol in urine and plasma for the diagnosis of pheochromocytoma. New Eng J Med 319(3):136–142CrossRefGoogle Scholar
  25. 25.
    Barthelemy C, Bruneau N, Cottet-Eymard JM, Domenech-Jouve J, Garreau B, Lelord G, Muh JP, Peyrin L (1988) Urinary free and conjugated catecholamines and metabolites in autistic children. J Autism Dev Disord 18(4):583–591CrossRefGoogle Scholar
  26. 26.
    Stevenson PG, Mnatsakanyan M, Guiochon G, Shalliker RA (2010) Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography. Analyst 135(7):1541–1550CrossRefGoogle Scholar
  27. 27.
    Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L (2008) Comprehensive multidimensional liquid chromatography: theory and applications. J Chromatogr A 1184(1–2):353–368CrossRefGoogle Scholar
  28. 28.
    Guiochon G, Marchetti N, Mriziq K, Shalliker RA (2008) Implementations of two-dimensional liquid chromatography. J Chromatogr A 1189(1–2):109–168CrossRefGoogle Scholar
  29. 29.
    Eggink M, Romero W, Vreuls RJ, Lingeman H, Niessen WMA, Irth H (2008) Development and optimization of a system for comprehensive two-dimensional liquid chromatography with UV and mass spectrometric detection for the separation of complex samples by multi-step gradient elution. J Chromatogr A 1188(2):216–226CrossRefGoogle Scholar
  30. 30.
    Zeng L, Xu R, Zhang Y, Kassel DB (2011) Two-dimensional supercritical fluid chromatography/mass spectrometry for the enantiomeric analysis and purification of pharmaceutical samples. J Chromatogr A 1218(20):3080–3088CrossRefGoogle Scholar
  31. 31.
    Raust J-A, Brüll A, Moire C, Farcet C, Pasch H (2008) Two-dimensional chromatography of complex polymers: 6. Method development for (meth)acrylate-based copolymers. J Chromatogr A 1203(2):207–216CrossRefGoogle Scholar
  32. 32.
    Issaq HJ, Chan KC, Janini GM, Conrads TP, Veenstra TD (2005) Multidimensional separation of peptides for effective proteomic analysis. J Chromatogr B 817(1):35–47CrossRefGoogle Scholar
  33. 33.
    Janssen H-G, Steenbergen H, de Koning S (2009) The role of comprehensive chromatography in the characterization of edible oils and fats. Eur J Lipid Sci Tech 111(12):1171–1184CrossRefGoogle Scholar
  34. 34.
    Anderson GM, Schlicht KR, Cohen DJ (1985) Two-dimensional high-performance liquid chromatographic determination of 5-hydroxyindoleacetic acid and homovanillic acid in urine. Anal Biochem 144(1):27–31CrossRefGoogle Scholar
  35. 35.
    Anderson GM, Schlicht KR, Cohen DJ (1983) Two-dimensional liquid chromatographic determination of (3-methoxy-4-hydroxyphenyl)glycol in urine. Anal Chem 55(8):1399–1402CrossRefGoogle Scholar
  36. 36.
    Tsunoda M (2006) Recent advances in methods for the analysis of catecholamines and their metabolites. Anal Bioanal Chem 386(3):506–514CrossRefGoogle Scholar
  37. 37.
    Garnier P, Grosclaude J-M, Goudey-Perrière F, Gervat V, Gayral P, Jacquot C, Perrière C (1996) Presence of norepinephrine and other biogenic amines in stonefish venom. J Chromatogr B 685(2):364–369CrossRefGoogle Scholar
  38. 38.
    Cheng F-C, Kuo J-S (1995) High-performance liquid chromatographic analysis with electrochemical detection of biogenic amines using microbore columns. J Chromatogr B 665(1):1–13CrossRefGoogle Scholar
  39. 39.
    Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ (2004) High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Meth 138(1–2):123–132CrossRefGoogle Scholar
  40. 40.
    Bicker J, Fortuna A, Alves G, Falcão A (2013) Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples—a review. Anal Chim Acta 768(1):12–34CrossRefGoogle Scholar
  41. 41.
    Hindson BJ, Barnett NW (2001) Analytical applications of acidic potassium permanganate as a chemiluminescence reagent. Anal Chim Acta 445(1):1–19CrossRefGoogle Scholar
  42. 42.
    Deftereos NT, Calokerinos AC, Efstathiou CE (1993) Flow injection chemiluminometric determination of epinephrine, norepinephrine, dopamine and L-dopa. Analyst 118(6):627–632CrossRefGoogle Scholar
  43. 43.
    Ikkai H, Nakagama T, Yamada M, Hobo T (1989) Flow chemiluminescent determination of catecholamines based on permanganate oxidation. Bull Chem Soc Jap 62(5):1660–1662CrossRefGoogle Scholar
  44. 44.
    Slezak T, Smith ZM, Adcock JL, Hindson CM, Barnett NW, Nesterenko PN, Francis PS (2011) Kinetics and selectivity of permanganate chemiluminescence: a study of hydroxyl and amino disubstituted benzene positional isomers. Anal Chim Acta 707(1–2):121–127CrossRefGoogle Scholar
  45. 45.
    Adcock JL, Francis PS, Barnett NW (2007) Acidic potassium permanganate as a chemiluminescence reagent—a review. Anal Chim Acta 601(1):36–67CrossRefGoogle Scholar
  46. 46.
    Adcock JL, Barnett NW, Costin JW, Francis PS, Lewis SW (2005) Determination of selected neurotransmitter metabolites using monolithic column chromatography coupled with chemiluminescence detection. Talanta 67(3):585–589CrossRefGoogle Scholar
  47. 47.
    McDermott GP, Francis PS, Holt KJ, Scott KL, Martin SD, Stupka N, Barnett NW, Conlan XA (2011) Determination of intracellular glutathione and glutathione disulfide using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Analyst 136(12):2578–2585CrossRefGoogle Scholar
  48. 48.
    Eilers PHC (2003) A perfect smoother. Anal Chem 75(14):3631–3636CrossRefGoogle Scholar
  49. 49.
    Francis PS, Hindson CM, Terry JM, Smith ZM, Slezak T, Adcock JL, Fox BL, Barnett NW (2011) Enhanced permanganate chemiluminescence. Analyst 136(1):64–66CrossRefGoogle Scholar
  50. 50.
    Inoue T, Tsuchiya K, Koyama T (1994) Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav 49(4):911–920CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Brendan J. Holland
    • 1
  • Xavier A. Conlan
    • 1
    Email author
  • Paul G. Stevenson
    • 1
  • Susannah Tye
    • 2
  • Ashlie Reker
    • 2
  • Neil W. Barnett
    • 1
  • Jacqui L. Adcock
    • 1
  • Paul S. Francis
    • 1
    Email author
  1. 1.Centre for Chemistry and Biotechnology, School of Life and Environmental SciencesDeakin UniversityWaurn PondsAustralia
  2. 2.School of PsychologyDeakin UniversityBurwoodAustralia

Personalised recommendations