Analytical and Bioanalytical Chemistry

, Volume 406, Issue 3, pp 687–694 | Cite as

Simulation of oxidative stress of guanosine and 8-oxo-7,8-dihydroguanosine by electrochemically assisted injection–capillary electrophoresis–mass spectrometry

  • Rebekka Scholz
  • Peter Palatzky
  • Frank-Michael MatysikEmail author
Research Paper


Oxidative stress plays a crucial role in DNA and RNA damage within biological cells. As a consequence, mutations of DNA can occur, leading to disorders like cancer and neurodegenerative and cardiovascular diseases. The oxidative attack of guanosine and 8-oxo-7,8-dihydroguanosine is simulated by electrochemistry coupled to capillary electrophoresis–mass spectrometry. The electrochemical conversion of the compound of interest is implemented in the injection protocol termed electrochemically assisted injection (EAI). In this way, oxidation products of guanosine can be generated electrochemically, separated by capillary electrophoresis, and detected by electrospray ionization time-of-flight mass spectrometry (EAI–CE–MS). A fully automated laboratory-made EAI cell with an integrated buffer reservoir and a compartment holding screen-printed electrodes is used for the injection. In this study, parameters like pH of the sample solution and the redox potential applied during the injection were investigated in terms of corresponding formation of well-known markers of DNA damage. The important product species, 8-oxo-7,8-dihydroguanosine, was investigated in a separate study to distinguish between primary and secondary oxidation products. A comparison of product species formed under alkaline, neutral, and acidic conditions is presented. To compare real biological systems with an analytical approach for simulation of oxidative stress, it is desirable to have a well-defined control over the redox potential and to use solutions, which are close to physiological conditions. In contrast to typical HPLC–MS protocols, the hyphenation of EAI, CE, and MS enables the generation and separation of species involved without the use of organic solvents. Thus, information of the electrochemical behavior of the nucleoside guanosine as well as the primary oxidation product 8-oxo-7,8-dihydroguanosine can be characterized under conditions close to the physiological situation. In addition, the migration behavior found in CE separations of product species can be used to identify compounds if several possible species have the same mass-to-charge values determined by MS detection.


Nucleoside oxidation Electrochemistry Capillary electrophoresis Mass spectrometry Electrochemically assisted injection Guanosine Oxidative stress 







Boron-doped diamond




Capillary electrophoresis






Electrochemically assisted injection


Electrochemistry–mass spectrometry


Electrochemistry–μ-liquid chromatography–mass spectrometry


Electroosmotic flow


Electrospray ionization time-of-flight mass spectrometry










Liquid chromatography–mass spectrometry


Mass spectrometry


Ammonium acetate




Quadrupole time-of-flight mass spectrometry


Reactive oxygen species




Screen-printed carbon electrode


Migration time



This research was supported by the Research Executive Agency (REA) of the European Union under grant agreement number PITN-GA-2010-264772 (ITN CHEBANA). We thank J. Kiermaier for the measurements concerning high-resolution mass spectrometry.


  1. 1.
    Burrows CJ, Muller JG (1998) Chem Rev 98:1109. doi: 10.1021/cr960421s CrossRefGoogle Scholar
  2. 2.
    Wang D, Kreutzer DA, Essigmann JM (1998) Mutat Res 400:99. doi: 10.1016/S0027-5107(98)00066-9 CrossRefGoogle Scholar
  3. 3.
    Kamiya H (2003) Nucleic Acids Res 31:517. doi: 10.1093/nar/gkg137 CrossRefGoogle Scholar
  4. 4.
    Broedbaek K, Weimann A, Stovgaard ES, Poulsen HE (2011) Free Radic Biol Med 51:1473. doi: 10.1016/j.freeradbiomed.2011.07.007 CrossRefGoogle Scholar
  5. 5.
    Dryhurst G, Elving PJ (1969) Talanta 16:855. doi: 10.1016/0039-9140(69)80126-8 CrossRefGoogle Scholar
  6. 6.
    Oliveira-Brett AM, Matysik F-M (1997) Bioelectrochem Bioener 42:111. doi: 10.1016/S0302-4598(96)05123-9 CrossRefGoogle Scholar
  7. 7.
    Baumann A, Lohmann W, Jahn S, Karst U (2010) Electroanalysis 3:286. doi: 10.1002/elan.200900358 CrossRefGoogle Scholar
  8. 8.
    Boussicault F, Robert M (2008) Chem Rev 108:10.1021/cr0680787CrossRefGoogle Scholar
  9. 9.
    Mautjana NA, Looi DW, Eyler JR, Brajter-Toth A (2009) Electrochim Acta 55:52. doi: 10.1016/j.electacta.2009.07.083 CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Pitterl F, Chervet J-P, Oberacher H (2010) Anal Bioanal Chem 397:1203. doi: 10.1007/s00216-010-3674-z CrossRefGoogle Scholar
  12. 12.
    Erb R, Plattner S, Pitterl F, Brouwer H-J, Oberacher H (2012) Electrophoresis 33:614. doi: 10.1002/elps.201100406 CrossRefGoogle Scholar
  13. 13.
    Matysik F-M (2003) Electrochem Commun 5:1021. doi: 10.1016/j.elecom.2003.10.001 CrossRefGoogle Scholar
  14. 14.
    Scholz R, Matysik F-M (2011) Analyst 136:1562. doi: 10.1039/C0AN00794C CrossRefGoogle Scholar
  15. 15.
    Lopes FS, Antunes O, Gutz IGR (2010) Electrochem Commun 12:1387. doi: 10.1016/j.elecom.2010.07.027 CrossRefGoogle Scholar
  16. 16.
    Santos MSF, Lopes FS, Vidal DTR, do Lago CL, Gutz IGR (2012) Anal Chem 84:7599. doi: 10.1021/ac30193121 CrossRefGoogle Scholar
  17. 17.
    Palatzky P, Matysik F-M (2012) Electrophoresis 33:2689. doi: 10.1002/elps.201200088 CrossRefGoogle Scholar
  18. 18.
    Palatzky P, Zöpfl A, Hirsch T, Matysik F-M (2013) Electroanalysis 25:117. doi: 10.1002/elan.201200393 CrossRefGoogle Scholar
  19. 19.
    Markus TZ, Daube SS, Naaman R, Fleming AM, Muller JG, Burrows CJ (2009) J Am Chem Soc 131:89. doi: 10.1021/ja804177j CrossRefGoogle Scholar
  20. 20.
    Steenken S, Jovanovic SV (1997) J Am Chem Soc 119:617. doi: 10.1021/ja962255b CrossRefGoogle Scholar
  21. 21.
    Pratviel G, Meunier B (2006) Chem Eur J 12:6018. doi: 10.1002/chem.200600539 CrossRefGoogle Scholar
  22. 22.
    Goyal RN, Sondhi SM, Latoti AM (2005) New J Chem 29:587. doi: 10.1039/b415452p CrossRefGoogle Scholar
  23. 23.
    McCallum JEB, Kuniyoshi CY, Foote CS (2004) J Am Chem Soc 126:16777. doi: 10.1021/ja030678p CrossRefGoogle Scholar
  24. 24.
    Verdolino V, Cammi R, Munk BH, Schlegel HB (2008) J Phys Chem B 112:16860. doi: 10.1021/jp8068877 CrossRefGoogle Scholar
  25. 25.
    Fleming AM, Muller JG, Dlouhy AC, Burrows CJ (2012) J Am Chem Soc 134:15091. doi: 10.1021/ja306077b CrossRefGoogle Scholar
  26. 26.
    Ye Y, Muller JG, Luo W, Mayne CL, Shallop AJ, Jones RA, Burrows CJ (2003) J Am Chem Soc 125:13926. doi: 10.1021/ja0378660 CrossRefGoogle Scholar
  27. 27.
    Niles JC, Wishnok JS, Tannenbaum SR (2006) Nitric Oxide 14:109. doi: 10.1016/j.niox.2005.11.001 CrossRefGoogle Scholar
  28. 28.
    Sheu C, Kang P, Khan S, Foote CS (2002) J Am Chem Soc 124:3905. doi: 10.1021/ja011696e CrossRefGoogle Scholar
  29. 29.
    Kang P, Foote CS (2002) J Am Chem Soc 124:4865. doi: 10.1021/ja012038x CrossRefGoogle Scholar
  30. 30.
    Volk KJ, Lee MS, Yost RA, Brajter-Toth A (1988) Anal Chem 60:720. doi: 10.1021/ac00158a025 CrossRefGoogle Scholar
  31. 31.
    Volk KJ, Yost RA, Brajter-Toth A (1992) Anal Chem 64:21A. doi: 10.1021/ac00025a721 Google Scholar
  32. 32.
    Müller H, Carell T (2007) Eur J Org Chem 2007:1438. doi: 10.1002/ejoc.200600982 CrossRefGoogle Scholar
  33. 33.
    Murakami H, Esaka Y, Nakayama T, Uno B (2011) Chem Lett 40:268. doi: 10.1246/cl.2011.268 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rebekka Scholz
    • 1
  • Peter Palatzky
    • 1
  • Frank-Michael Matysik
    • 1
    Email author
  1. 1.Institute for Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations