Analytical and Bioanalytical Chemistry

, Volume 406, Issue 4, pp 1011–1027 | Cite as

Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production

  • M. Roger
  • A. de Poulpiquet
  • A. Ciaccafava
  • M. Ilbert
  • M. Guiral
  • M. T. Giudici-Orticoni
  • E. Lojou


How the redox proteins and enzymes involved in bioenergetic pathways are organized is a relevant fundamental question, but our understanding of this is still incomplete. This review provides a critical examination of the electrochemical tools developed in recent years to obtain knowledge of the intramolecular and intermolecular electron transfer processes involved in metabolic pathways. Furthermore, better understanding of the electron transfer processes associated with energy metabolism will provide the basis for the rational design of biotechnological devices such as electrochemical biosensors, enzymatic and microbial fuel cells, and hydrogen production factories. Starting from the redox complexes involved in two relevant bacterial chains, i.e., from the hyperthermophile Aquifex aeolicus and the acidophile Acidithiobacillus ferrooxidans, examination of protein–protein interactions using electrochemistry is first reviewed, with a focus on the orientation of a protein on an electrochemical interface mimic of a physiological interaction between two partners. Special attention is paid to current research in the electrochemistry of essential membrane proteins, which is one mandatory step toward the understanding of energy metabolic pathways. The complex and challenging architectures built to reconstitute a membrane-like environment at an electrode are especially considered. The role played by electrochemistry in the attempt to consider full bacterial metabolism is finally emphasized through the study of whole cells immobilized at electrodes as suspensions or biofilms. Before the performances of biotechnological devices can be further improved to make them really attractive, questions remain to be addressed in this particular field of research. We discuss the bottlenecks that need to be overcome in the future.


Protein orientation Membrane protein Metabolism Bioenergetics Electrochemistry 



Cytochrome c oxidase


Direct electron transfer


Desulfovibrio vulgaris Hildenborough


Polarization-modulation infrared reflection–adsorption spectroscopy


Quartz crystal microbalance


Self-assembled monolayer


Surface-enhanced infrared absorption


Standard hydrogen electrode


Tethered bilayer lipid membrane



The authors thank Région Provence-Alpes-Côte d’Azur, CNRS, and ANR Bioénergie no. ANR-2010-BIOE-003-01 for financial support.


  1. 1.
    Leech D, Kavanagh P, Schuhmann W (2012) Electrochim Acta 84:223–234Google Scholar
  2. 2.
    Lovley D (2011) Energy Environ Sci 4:4896–4906Google Scholar
  3. 3.
    Moehlenbrock M, Toby T, Pelster L, Minteer S (2011) ChemCatChem 3:561–570Google Scholar
  4. 4.
    Borgmann S, Schulte A, Neugebaue S, Schuhmann W (2011) In: Alkire RC, Kolb DM, Lipkowski J (eds) Advances in electrochemical science and engineering: bioelectrochemistry, vol 13. Weinheim, Wiley-VCHGoogle Scholar
  5. 5.
    Wang J (2006) Biosens Bioelectron 21:1887–1892Google Scholar
  6. 6.
    Zayats M, Willner B, Willner I (2008) Electroanalysis 20:583–601Google Scholar
  7. 7.
    Amine A, Mohammadi H, Bourais I, Pallesschi G (2006) Biosens Bioelectron 21:1405–1423Google Scholar
  8. 8.
    Willner I, Katz E (2000) Angew Chem Int Ed 39:1180–1218Google Scholar
  9. 9.
    de Poulpiquet A, Ciaccafava A, Lojou E (2013) Electrochim Acta. doi: 10.1016/j.electacta.2013.07.133 Google Scholar
  10. 10.
    Zhou Z, Hartmann M (2013) Chem Soc Rev 42:3894–3912Google Scholar
  11. 11.
    Katz E, Minko S, Halamek J, MacVittie K, Yancey K (2013) Anal Bioanal Chem 405:3659–3672Google Scholar
  12. 12.
    Putzbach W, Ronkainen N (2013) Sensors 13:4811–4840Google Scholar
  13. 13.
    Prakash S, Chakrabarty T, Singh A, Shahi V (2013) Biosens Bioelectron 41:43–53Google Scholar
  14. 14.
    Willey JM, Sherwood LM, Woolverton CJ (2008) Prescott, Harley and Klein's microbiology, 7th edn. McGraw Hill, New YorkGoogle Scholar
  15. 15.
    Richardson DJ, Butt JN, Fredrickson JK, Zachara JM, Shi L, Edwards MJ, White G, Baiden N, Gates AJ, Marritt SJ, Clarke TA (2012) Mol Microbiol 85:201–212Google Scholar
  16. 16.
    Richter O, Ludwig B (2009) Biochim Biophys Acta 1787:626–634Google Scholar
  17. 17.
    Lenaz G, Genova ML (2012) Adv Exp Med Biol 748:107–144Google Scholar
  18. 18.
    Vonck J, Schäfer E (2009) Biochim Biophys Acta 1793:117–124Google Scholar
  19. 19.
    Boekema EJ, Braun HP (2007) J Biol Chem 282:1–4Google Scholar
  20. 20.
    Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca AI, Formiggini G, Sgarbi G, Solaini G, Lenaz G (2008) Biochim Biophys Acta 1777:740–746Google Scholar
  21. 21.
    Genova ML, Lenaz G (2013) Biol Chem. doi: 10.1515/hsz-2012-0317 Google Scholar
  22. 22.
    Prunetti L, Infossi P, Brugna M, Ebel C, Giudici-Orticoni MT, Guiral M (2010) J Biol Chem 285:41815–41826Google Scholar
  23. 23.
    Magalon A, Arias-Cartin R, Walburger A (2012) Adv Microb Physiol 61:217–266Google Scholar
  24. 24.
    Arias-Cartin R, Grimaldi S, Pommier J, Lanciano P, Schaefer C, Arnoux P, Giordano G, Guigliarelli B, Magalon A (2011) Proc Natl Acad Sci U S A 108:7781–7786Google Scholar
  25. 25.
    Bazán S, Mileykovskaya E, Mallampalli VK, Heacock P, Sparagna GC, Dowhan W (2013) J Biol Chem 288:401–411Google Scholar
  26. 26.
    Guiral M, Prunetti L, Lignon S, Lebrun R, Giudici-Orticoni MT (2009) J Proteome Res 8:1717–1730Google Scholar
  27. 27.
    Guiral M, Prunetti L, Aussignargues C, Ciaccafava A, Infossi P, Ilbert M, Lojou E, Giudici-Orticoni MT (2012) Adv Microb Physiol 61:125–194Google Scholar
  28. 28.
    Roger M, Castelle C, Guiral M, Infossi P, Lojou E, Giudici-Orticoni MT, Ilbert M (2012) Biochem Soc Trans 40:1324–1329Google Scholar
  29. 29.
    Brugna-Guiral M, Tron P, Nitschke W, Stetter K-O, Burlat B, Guigliarelli B, Bruschi M, Giudici-Orticoni MT (2003) Extremophiles 7:145–157Google Scholar
  30. 30.
    Prunetti L, Brugna M, Lebrun R, Giudici-Orticoni MT, Guiral M (2011) PLoS One 6(6):e21616Google Scholar
  31. 31.
    Guiral M, Tron P, Aubert C, Gloter A, Iobbi-Nivol C, Giudici-Orticoni MT (2005) J Biol Chem 280:42004–42015Google Scholar
  32. 32.
    Ilert M, Bonnefoy V (2013) Biochim Biophys Acta 1827:161–175Google Scholar
  33. 33.
    Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M, Giudici-Orticoni MT (2008) J Biol Chem 283:25803–25811Google Scholar
  34. 34.
    Malarte G, Leroy G, Lojou E, Abergel C, Bruschi M, Giudici-Orticoni MT (2005) Biochemistry 44:6471–6481Google Scholar
  35. 35.
    Castelle C, Ilbert M, Infossi P, Leroy G, Giudici-Orticoni MT (2010) J Biol Chem 285:21519–21525Google Scholar
  36. 36.
    Frew JE, Hill H (1988) Eur J Biochem 172:261–269Google Scholar
  37. 37.
    Armstrong FA, Hill HAO, Walton NJ (1988) Acc Chem Res 21:407–413Google Scholar
  38. 38.
    Page C, Moser C, Chen X, Dutton P (1999) Nature 402:47–52Google Scholar
  39. 39.
    Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998) Eur J Biochem 251:367–373Google Scholar
  40. 40.
    Jin B, Wang GX, Millo D, Hildebrandt P, Xia XH (2012) J Phys Chem C 116:13038–13044Google Scholar
  41. 41.
    Lojou E, Luciano P, Nitsche S, Bianco P (1999) Electrochim Acta 44:3341–3352Google Scholar
  42. 42.
    Lojou E, Bianco P (2000) J Electroanal Chem 485:71–80Google Scholar
  43. 43.
    Pardo-Yissar V, Katz E, Willner I, Kotlyar A, Sanders C, Lill H (2000) Faraday Discuss 116:119–134Google Scholar
  44. 44.
    Wegerig F, Giachetti A, Allegrozzi M, Lisdat F, Turano P (2013) J Biol Inorg Chem 18:429–440Google Scholar
  45. 45.
    Chen Y, Yang XJ, Guo LR, Jin B, Xia XH, Zheng LM (2009) Talanta 78:248–252Google Scholar
  46. 46.
    Wang G, Bao W, Wang M, Xia H (2012) Chem Commun 48:10859–10861Google Scholar
  47. 47.
    Correira dos Santos M, Paes de Sousa P, Simoes Goncalves M, Krippahl L, Moura J, Lojou E, Bianco P (2003) J Electroanal Chem 541:153–162Google Scholar
  48. 48.
    Abergel C, Nitschke W, Malarte G, Bruschi M, Claverie JM, Giudici-Orticoni MT (2003) Structure 11:547–555Google Scholar
  49. 49.
    Chi Q, Zhang J, Arslan T, Borg L, Pedersen G, Christensen H, Nazmudtinov R, Ulsrup J (2010) J Phys Chem B 114:5617–5624Google Scholar
  50. 50.
    Zhang J, Chi Q, Hansen Q, Jensen P, Salvatore P, Ulstrup J (2012) FEBS Lett 586:526–535Google Scholar
  51. 51.
    Raffalt A, Schmidt L, Christensen H, Chi Q, Ulsrup J (2009) J Inorg Biochem 103:717–722Google Scholar
  52. 52.
    Monari S, Battistuzzi G, Borsari M, Di Rocco G, Martini L, Ranieri A, Sola M (2009) J Phys Chem 113:13645–13653Google Scholar
  53. 53.
    Ciaccafava A, Alberola M, Hameury S, Infossi P, Giudici-Orticoni MT, Lojou E (2011) Electrochim Acta 56:3359–3368Google Scholar
  54. 54.
    Cracknell J, McNamara T, Lowe E, Blanford C (2011) Dalton Trans 40:6668–6675Google Scholar
  55. 55.
    Blanford C, Heath R, Armstrong F (2007) Chem Commun 17:1710–1712Google Scholar
  56. 56.
    Olejnik P, Palys B, Kowalczyk A, Nowicka A (2012) J Phys Chem C 116:25911–25918Google Scholar
  57. 57.
    Vignais P, Billoud B (2007) Chem Rev 107:4206–4272Google Scholar
  58. 58.
    Rüdiger O, Gutierrez-Sanchez C, Olea D, Pereira I, Velez M, Fernandez V, de Lacey A (2010) Electroanalysis 22:776–783Google Scholar
  59. 59.
    Lojou E (2011) Electrochim Acta 56:10385–10397Google Scholar
  60. 60.
    Lojou E, Luo X, Brugna M, Candoni N, Dementin S, Giudici-Orticoni MT (2008) J Biol. Inorg Chem 13:1157–1167Google Scholar
  61. 61.
    Millo D, Pandelia ME, Utesch T, Wisitruangsakul N, Mroginski MA, Lubitz W, Hildebrandt P, Zebger I (2009) J Phys Chem 113:15344–15351Google Scholar
  62. 62.
    Utesch T, Millo D, Castro A, Hildebrandt P, Zebger I, Mroginski M (2013) Langmuir 29:673–682Google Scholar
  63. 63.
    Luo XJ, Brugna M, Infossi P, Giudici-Orticoni MT, Lojou E (2009) J Biol Inorg Chem 14:1275–1288Google Scholar
  64. 64.
    Ciaccafava A, Infossi P, Ilbert M, Guiral M, Lecomte S, Giudici-Orticoni MT, Lojou E (2012) Angew Chem Int Ed 51:953–956Google Scholar
  65. 65.
    Ciaccafava A, De Poulpiquet A, Infossi P, Robert S, Gadiou R, Giudici-Orticoni MT, Lecomte S, Lojou E (2012) Electrochim Acta 82:115–125Google Scholar
  66. 66.
    Katz E (1994) J Electroanal Chem 365:157–164Google Scholar
  67. 67.
    Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Nature 473:55–60Google Scholar
  68. 68.
    Kato M, Cardona T, Rutherford W, Reisner E (2013) J Am Chem Soc 135:10610–10613Google Scholar
  69. 69.
    Madden C, Vaughn M, Diez-Perez I, Brown K, King P, Gust D, Moore A, Moore T (2012) J Am Chem Soc 134:1577–1582Google Scholar
  70. 70.
    Bianco P, Haladjian J, Bruschi M, Guerlesquin F (1992) Biochem Biophys Res Commun 189:633–639Google Scholar
  71. 71.
    Lojou E, Bianco P (2004) Electroanalysis 16:1093–1100Google Scholar
  72. 72.
    Pieulle L, Morelli X, Gallice P, Lojou E, Barbier P, Czjzek M, Bianco P, Guerlesquin F, Hatchikian C (2005) J Mol Biol 354:73–90Google Scholar
  73. 73.
    Lojou E, Cutruzzola F, Tegoni M, Bianco P (2003) Electrochim Acta 48:1055–1064Google Scholar
  74. 74.
    Paes de Sousa P, Pauleta S, Simoes Goncalves M, Pettigrew G, Correia dos Santos M, Moura J (2007) J Biol Inorg Chem 12:691–698Google Scholar
  75. 75.
    Paes de Sousa P, Rodrigues D, Timóteo C, Simões Gonçalves M, Pettigrew G, Moura I, Moura J, Correia dos Santos M (2011) J Biol Inorg Chem 16:881–888Google Scholar
  76. 76.
    Fujita K, Hirasawa-Fujita M, Brown D, Obara Y, Ijima F, Kohzuma T, Dooley D (2012) J Inorg Biochem 115:163–173Google Scholar
  77. 77.
    Ferapontova H, Ruzgas T, Gorton L (2003) Anal Chem 75:4841–4850Google Scholar
  78. 78.
    Sarauli D, Ludwig R, Haltrich D, Gorton L, Lisdat F (2012) Bioelectrochemistry 87:9–14Google Scholar
  79. 79.
    Bagby S, Barker P, Guo L, Hill H (1990) Bioelectrochemistry 29:3213–3219Google Scholar
  80. 80.
    Burrows A, Guo L, Hill H, McLendon G, Sherman F (1991) Eur J Biochem 202:543–549Google Scholar
  81. 81.
    Lojou E, Pieulle L, Guerlesquin F, Bianco P (2002) J Electroanal Chem 523:150–159Google Scholar
  82. 82.
    Cambillaud C, Frey M, Mossé J, Guerlesquin F, Bruschi M (1988) Proteins Struct Funct Genet 4:63–70Google Scholar
  83. 83.
    Lojou E, Bianco P (2004) J Electroanal Chem 573:159–167Google Scholar
  84. 84.
    Seetharaman R, White S, Rivera M (1996) Biochemistry 35:12455Google Scholar
  85. 85.
    Heering H, Wiertz F, Dekker C, de Vries S (2004) J Am Chem Soc 136:11103–11112Google Scholar
  86. 86.
    Grumelli D, Mendez de Leo L, Bonazzola C, Zamlynny V, Calvo E, Salvarezza R (2010) Langmuir 26:8226–8232Google Scholar
  87. 87.
    Sezer M, Frielingsdorf S, Millo D, Heidary N, Utesch T, Mroginski MA, Friedrich B, Hildebrandt P, Zebger I, Weidinger IM (2011) J Phys Chem B 115:10368–10374Google Scholar
  88. 88.
    Jensen P, Chi Q, Zhang J, Ulstrup J (2009) J Phys Chem C 113:13393–14000Google Scholar
  89. 89.
    Koepke J, Olkhova E, Angerer H, Müller H, Peng G, Michel H (2009) Biochim Biophys Acta 1787:635–645Google Scholar
  90. 90.
    Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Nature 376:660–669Google Scholar
  91. 91.
    Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S (2006) Proc Natl Acad Sci U S A 103:16117–16122Google Scholar
  92. 92.
    Haas A, Pilloud D, Reddy K, Babcock G, Moser C, Blasie J, Dutton P (2001) J Phys Chem B 105:11351–11362Google Scholar
  93. 93.
    Devadoss A, Burgess J (2002) Langmuir 18:9617–9621Google Scholar
  94. 94.
    Su L, Kelly J, Hawkridge F, Rhoten M, Baskin S (2005) J Electroanal Chem 581:241–248Google Scholar
  95. 95.
    Knoll W, Morigaki K, Naumann R, Sacca B, Schiller S, Sinner E (2004) In: Mirsky VM (ed) Ultrathin electrochemical chemo- and biosensors, technology and performance. Springer, Berlin, pp 239–254Google Scholar
  96. 96.
    Naumann R, Schmidt E, Jonczyk A, Fendler K, Kadenbach B, Liebermann T, Offenhäusser A, Knoll W (1999) Biosens Bioelectron 14:651–662Google Scholar
  97. 97.
    Rossi C, Chopineau J (2007) Eur Biophys J 36:955–965Google Scholar
  98. 98.
    Leitch J, Kunze J, Goddard J, Qchwan A, Faragher R, Naumann R, Knoll W, Dutcher J, Lipkowski J (2009) J Am Chem Soc 25:10354–10363Google Scholar
  99. 99.
    Friedrich M, Plum M, Santonicola M, Kirste V, Knoll W, Ludwig B, Naumann R (2008) Biophys J 95:1500–1510Google Scholar
  100. 100.
    Ataka K, Richter B, Heberle J (2006) J Phys Chem B 110:9339–9347Google Scholar
  101. 101.
    Schach D, Nawak C, Gennis R, Ferguson-Miller S, Knoll W, Walz D, Naumann R (2010) J Electroanal Chem 649:268–276Google Scholar
  102. 102.
    Nowak C, Schach D, Gebert J, Grosserueschkamp M, Gennis R, Ferguson-Miller S, Knoll W, Walz D, Naumann R (2011) J Solid State Electrochem 15:105–114Google Scholar
  103. 103.
    Infossi P, Lojou E, Chauvin JP, Herbette G, Brugna M, Giudici-Orticoni MT (2010) Int J Hydrog Energy 35:10778–10789Google Scholar
  104. 104.
    Jeuken L, Connell S, Nurnabi M, O’Reilly J, Henderson P, Evans S, Bushby R (2005) Langmuir 21:1481–1488Google Scholar
  105. 105.
    Weiss S, Bushby R, Evans S, Jeuken L (2010) Biochim Biophys Acta 1797:1917–1923Google Scholar
  106. 106.
    McMillan D, Marritt S, Firer-Sherwood M, Shi L, Richardson D, Evans S, Elliot S, Butt J, Jeuken L (2013) 135:10550–10556Google Scholar
  107. 107.
    Yuan Y, Zhou S, Zhang J, Zhuang L, Yang G, Kim S (2012) Electrochem Commun 18:62–65Google Scholar
  108. 108.
    Kundu A, Sau J, Redzwan G, Hashim M (2013) Int J Hydrog Energy 38:1745–1757Google Scholar
  109. 109.
    Gnana kumar G, Sarathi V, Nahm K (2013) Biosens Bioelectron 43:461–475Google Scholar
  110. 110.
    Abo-Hashesh M, Wang R, Hallenbeck P (2011) Bioresour Technol 102:8414–8422Google Scholar
  111. 111.
    Eriksen S, Riis M, Holm N, Iversen N (2011) Biotechnol Lett 33:293–300Google Scholar
  112. 112.
    Quéméneur M, Hamelin J, Benomar S, Giudici-Orticoni MT, Latrille E, Steyer JP, Trably E (2011) Int J Hydrog Energy 36:11654–11665Google Scholar
  113. 113.
    Willquist K, van Niel E (2010) Metab Eng 12:282–290Google Scholar
  114. 114.
    Kostesha N, Willquist K, Emneus J, van Niel E (2011) Extremophiles 15:77–87Google Scholar
  115. 115.
    Ikeda T, Kano K (2001) J Biosci Bioeng 92:9–18Google Scholar
  116. 116.
    Lojou E, Bianco P (2004) Electroanalysis 16:1113–1121Google Scholar
  117. 117.
    Lojou E, Durand M, Dolla A, Bianco P (2002) Electroanalysis 14:913–922Google Scholar
  118. 118.
    Pohorelic B, Voordouw J, Lojou E, Dolla A, Harder J, Voordouw G (2002) J Bacteriol 184:679–686Google Scholar
  119. 119.
    Gregory K, Bond D, Lovley D (2004) Environ Microbiol 6:596–604Google Scholar
  120. 120.
    Malvankar N, Vargas M, Nevin K, Franks A, Leang C, Kim B, Inoue K, Mester T, Covalla S, Johnson J, Rotelllo V, Tuominen M, Lovley D (2011) Nat Nanotechnol 6:573–579Google Scholar
  121. 121.
    Snider R, Strycharz-Glaven S, Tsoi S, Erickson J, Tender L (2012) Proc Natl Acad Sci U S A 109:15467–15472Google Scholar
  122. 122.
    Jiang X, Hu J, Fitzgerald L, Biffinger J, Xie P, Ringeisen B, Lieber C (2010) Proc Natl Acad Sci U S A 107:16806–16810Google Scholar
  123. 123.
    Lovley D (2012) Biochem Soc Trans 40:1186–1190Google Scholar
  124. 124.
    Rabaey K, Rodriguez J, Blachkall L, Keller J, Gross P, Batstone D, Verstraete W, Nealson K (2007) ISME J 1:9–18Google Scholar
  125. 125.
    Smith J, Lovley D, Tremblay P (2013) Appl Environ Microbiol 79:901–907Google Scholar
  126. 126.
    Rosenbaum M, Aulenta F, Villano M, Angenent L (2011) Bioresour Technol 102:324–333Google Scholar
  127. 127.
    Rozendal R, Jeremiasse A, Hamelers H, Buisman C (2008) Environ Sci Technol 42:629–634Google Scholar
  128. 128.
    Aulenta F, Catapano L, Snip L, Villano M, Majone M (2012) ChemSusChem 5:1080–1085Google Scholar
  129. 129.
    Yu L, Duan J, Zhao W, Huang Y, Hou B (2011) Electrochim Acta 56:9041–9047Google Scholar
  130. 130.
    Armstrong F, Belsey N, Cracknell J, Goldet G, Parkin A, Reisner E, Vincent K, Wait A (2009) Chem Soc Rev 38:36–51Google Scholar
  131. 131.
    Lojou E, Bianco P (2006) Biogeosciences 69:237–247Google Scholar
  132. 132.
    Carbajosa S, Malki M, Caillard R, Lopez R, Palomares F, Martin-Gago J, Rodriguez N, Amils R, Fernandez V, De Lacey A (2010) Biosens Bioelectron 26:877–880Google Scholar
  133. 133.
    Erable B, Etcheverry L, Bergel A (2009) Electrochem Commun 11:619–622Google Scholar
  134. 134.
    Wei V, Elektorowicz M, Oleszkiewicz J (2011) Water Res 45:5058–5062Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Roger
    • 1
  • A. de Poulpiquet
    • 1
  • A. Ciaccafava
    • 1
  • M. Ilbert
    • 1
  • M. Guiral
    • 1
  • M. T. Giudici-Orticoni
    • 1
  • E. Lojou
    • 1
  1. 1.Unité de Bioénergétique et Ingénierie des Protéines, UMR7281-FR3479, Centre National de la Recherche ScientifiqueAix Marseille UniversitéMarseilleFrance

Personalised recommendations