Analytical and Bioanalytical Chemistry

, Volume 406, Issue 1, pp 283–291 | Cite as

Comparison of targeted peptide quantification assays for reductive dehalogenases by selective reaction monitoring (SRM) and precursor reaction monitoring (PRM)

  • Christian Schiffmann
  • Rasmus Hansen
  • Sven Baumann
  • Anja Kublik
  • Per Halkjær Nielsen
  • Lorenz Adrian
  • Martin von Bergen
  • Nico JehmlichEmail author
  • Jana Seifert
Research Paper


Targeted absolute protein quantification yields valuable information about physiological adaptation of organisms and is thereby of high interest. Especially for this purpose, two proteomic mass spectrometry-based techniques namely selective reaction monitoring (SRM) and precursor reaction monitoring (PRM) are commonly applied. The objective of this study was to establish an optimal quantification assay for proteins with the focus on those involved in housekeeping functions and putative reductive dehalogenase proteins from the strictly anaerobic bacterium Dehalococcoides mccartyi strain CBDB1. This microbe is small and slow-growing; hence, it provides little biomass for comprehensive proteomic analysis. We therefore compared SRM and PRM techniques. Eleven peptides were successfully quantified by both methods. In addition, six peptides were solely quantified by SRM and four by PRM, respectively. Peptides were spiked into a background of Escherichia coli lysate and the majority of peptides were quantifiable down to 500 amol absolute on column by both methods. Peptide quantification in CBDB1 lysate resulted in the detection of 15 peptides using SRM and 14 peptides with the PRM assay. Resulting quantification of five dehalogenases revealed copy numbers of <10 to 115 protein molecules per cell indicating clear differences in abundance of RdhA proteins during growth on hexachlorobenzene. Our results indicated that both methods show comparable sensitivity and that the combination of the mass spectrometry assays resulted in higher peptide coverage and thus more reliable protein quantification.


Dehalococcoides mccartyi strain CBDB1 cultivated on hexachlorobenzene were used to compare two targeted peptide quantification assays for reductive dehalogenases, namely selective reaction monitoring (SRM) and precursor reaction monitoring (PRM)


Dehalococcoides mccartyi CBDB1 Absolute protein quantification Selected reaction monitoring Precursor reaction monitoring Organohalide respiration Reductive dehalogenase 



This work was supported by the German Research Council, as project of the research group 1530.

Supplementary material

216_2013_7451_MOESM1_ESM.pdf (223 kb)
ESM 1 (PDF 223 kb)


  1. 1.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207CrossRefGoogle Scholar
  2. 2.
    Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28:710–721CrossRefGoogle Scholar
  3. 3.
    Qian W-J, Jacobs JM, Liu T, Camp DG, Smith RD (2006) Advances and challenges in liquid chromatography–mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics 5:1727–1744CrossRefGoogle Scholar
  4. 4.
    Maiolica A, Junger MA, Ezkurdia I, Aebersold R (2012) Targeted proteome investigation via selected reaction monitoring mass spectrometry. J Proteome 75:3495–3513CrossRefGoogle Scholar
  5. 5.
    Barr JR, Maggio VL, Patterson DG, Cooper GR, Henderson LO, Turner WE, Smith SJ, Hannon WH, Needham LL, Sampson EJ (1996) Isotope dilution–mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem 42:1676–1682Google Scholar
  6. 6.
    Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, Spiegelman CH, Zimmerman LJ, Ham AJ, Keshishian H, Hall SC, Allen S, Blackman RK, Borchers CH, Buck C, Cardasis HL, Cusack MP, Dodder NG, Gibson BW, Held JM, Hiltke T, Jackson A, Johansen EB, Kinsinger CR, Li J, Mesri M, Neubert TA, Niles RK, Pulsipher TC, Ransohoff D, Rodriguez H, Rudnick PA, Smith D, Tabb DL, Tegeler TJ, Variyath AM, Vega-Montoto LJ, Wahlander A, Waldemarson S, Wang M, Whiteaker JR, Zhao L, Anderson NL, Fisher SJ, Liebler DC, Paulovich AG, Regnier FE, Tempst P, Carr SA (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633–641CrossRefGoogle Scholar
  7. 7.
    Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, Borchers CH (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 8:1860–1877CrossRefGoogle Scholar
  8. 8.
    Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806CrossRefGoogle Scholar
  9. 9.
    Gallien S, Duriez E, Demeure K, Domon B (2013) Selectivity of LC-MS/MS analysis: implication for proteomics experiments. J Proteom 81:148–158CrossRefGoogle Scholar
  10. 10.
    Malmstrom L, Malmstrom J, Selevsek N, Rosenberger G, Aebersold R (2012) Automated workflow for large-scale selected reaction monitoring experiments. J Proteome Res 11:1644–1653CrossRefGoogle Scholar
  11. 11.
    Karlsson C, Malmström L, Aebersold R, Malmström J (2012) Proteome-wide selected reaction monitoring assays for the human pathogen Streptococcus pyogenes. Nat Commun 3:1301CrossRefGoogle Scholar
  12. 12.
    Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B (2012) Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11:1709–1723CrossRefGoogle Scholar
  13. 13.
    Adrian L, Szewzyk U, Wecke J, Görisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408:580–583CrossRefGoogle Scholar
  14. 14.
    Holscher T, Krajmalnik-Brown R, Ritalahti KM, Von Wintzingerode F, Gorisch H, Loffler FE, Adrian L (2004) Multiple nonidentical reductive-dehalogenase-homologous genes are common in Dehalococcoides. Appl Environ Microbiol 70:5290–5297CrossRefGoogle Scholar
  15. 15.
    Adrian L, Dudkova V, Demnerova K, Bedard DL (2009) “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl Environ Microbiol 75:4516–4524CrossRefGoogle Scholar
  16. 16.
    Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421:357–360CrossRefGoogle Scholar
  17. 17.
    E. Marco-Urrea, I. Nijenhuis, and L. Adrian (2011) Transformation and carbon iIsotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol. 15(4):1555−1562Google Scholar
  18. 18.
    Kube M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L (2005) Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 23:1269–1273CrossRefGoogle Scholar
  19. 19.
    Adrian L, Rahnenführer J, Gobom J, Hölscher T (2007) Identification of a chlorobenzene reductive dehalogenase in Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 73:7717–7724CrossRefGoogle Scholar
  20. 20.
    Wagner A, Adrian L, Kleinsteuber S, Andreesen JR, Lechner U (2009) Transcription analysis of genes encoding homologues of reductive dehalogenases in “Dehalococcoides” sp. strain CBDB1 by using terminal restriction fragment length polymorphism and quantitative PCR. Appl Environ Microbiol 75:1876–1884CrossRefGoogle Scholar
  21. 21.
    Fung JM, Morris RM, Adrian L, Zinder SH (2007) Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl Environ Microbiol 73:4439–4445CrossRefGoogle Scholar
  22. 22.
    Rowe AR, Heavner GL, Mansfeldt CB, Werner JJ, Richardson RE (2012) Relating chloroethene respiration rates in Dehalococcoides to protein and mRNA biomarkers. Environ Sci Technol 46:9388–9397CrossRefGoogle Scholar
  23. 23.
    Jayachandran G, Görisch H, Adrian L (2003) Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp. strain CBDB1. Arch Microbiol 180:411–416CrossRefGoogle Scholar
  24. 24.
    Adrian L, Hansen SK, Fung JM, Görisch H, Zinder SH (2007) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41:2318–2323CrossRefGoogle Scholar
  25. 25.
    MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968CrossRefGoogle Scholar
  26. 26.
    Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222CrossRefGoogle Scholar
  27. 27.
    Hecker M, Reder A, Fuchs S, Pagels M, Engelmann S (2009) Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus. Res Microbiol 160:245–258CrossRefGoogle Scholar
  28. 28.
    Malmstrom J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R (2009) Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460:762–765CrossRefGoogle Scholar
  29. 29.
    Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11:1475–1488CrossRefGoogle Scholar
  30. 30.
    de Graaf EL, Altelaar AF, van Breukelen B, Mohammed S, Heck AJ (2011) Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra. J Proteome Res 10:4334–4341CrossRefGoogle Scholar
  31. 31.
    Linke D, Hung CW, Cassidy L, Tholey A (2013) Optimized fragmentation conditions for iTRAQ-labeled phosphopeptides. J Proteome Res 12:2755–2763CrossRefGoogle Scholar
  32. 32.
    Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720CrossRefGoogle Scholar
  33. 33.
    Werner JJ, Ptak AC, Rahm BG, Zhang S, Richardson RE (2009) Absolute quantification of Dehalococcoides proteins: enzyme bioindicators of chlorinated ethene dehalorespiration. Environ Microbiol 11:2687–2697CrossRefGoogle Scholar
  34. 34.
    Sonnhammer ELL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein. Proc Int Conf Intell Syst Mol Biol 6:75–82Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Schiffmann
    • 1
  • Rasmus Hansen
    • 2
  • Sven Baumann
    • 3
  • Anja Kublik
    • 4
  • Per Halkjær Nielsen
    • 2
  • Lorenz Adrian
    • 4
  • Martin von Bergen
    • 1
    • 2
    • 3
  • Nico Jehmlich
    • 1
    Email author
  • Jana Seifert
    • 1
    • 5
  1. 1.Department of ProteomicsHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  2. 2.Department of Biotechnology, Chemistry and Environmental EngineeringAalborg UniversityAalborgDenmark
  3. 3.Department of MetabolomicsHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  4. 4.Department Isotope BiogeochemistryHelmholtz Centre for Environmental Research—UFZLeipzigGermany
  5. 5.Institute of Animal NutritionHohenheim UniversityStuttgartGermany

Personalised recommendations