Analytical and Bioanalytical Chemistry

, Volume 406, Issue 1, pp 171–182 | Cite as

Chemical imaging of trichome specialized metabolites using contact printing and laser desorption/ionization mass spectrometry

Paper in Forefront

Abstract

Cell transfer by contact printing coupled with carbon-substrate-assisted laser desorption/ionization was used to directly profile and image secondary metabolites in trichomes on leaves of the wild tomato Solanum habrochaites. Major specialized metabolites, including acyl sugars, alkaloids, flavonoids, and terpenoid acids, were successfully detected in positive ion mode or negative ion mode, and in some cases in both modes. This simple solvent-free and matrix-free sample preparation for mass spectrometry imaging avoids tedious sample preparation steps, and high-spatial-resolution images were obtained. Metabolite profiles were generated for individual glandular trichomes from a single Solanum habrochaites leaf at a spatial resolution of around 50 μm. Relative quantitative data from imaging experiments were validated by independent liquid chromatography–mass spectrometry analysis of subsamples from fresh plant material. The spatially resolved metabolite profiles of individual glands provided new information about the complexity of biosynthesis of specialized metabolites at the cellular-resolution scale. In addition, this technique offers a scheme capable of high-throughput profiling of metabolites in trichomes and irregularly shaped tissues and spatially discontinuous cells of a given cell type.

Keywords

Mass spectrometry imaging Glandular trichomes Plant specialized metabolites Single-cell analysis 

Notes

Acknowledgments

The authors thank Christoph Benning for providing access to a light microscope, Greg Swain for providing glassy carbon, Sigma-Aldrich Supelco for the prototype high-performance LC column, the Michigan State University Center for Advanced Microscopy for assistance with optical imaging, Robert Last, Tony Schilmiller, Eran Pichersky, and Feng Shi for valuable discussions, and the RTSF Mass Spectrometry and Metabolomics Core at Michigan State University. Support for this research was provided by NSF grants IOS-1025636 and DBI-0604336 (R.L. Last principal investigator), and Michigan AgBioResearch.

Supplementary material

216_2013_7444_MOESM1_ESM.pdf (742 kb)
ESM 1 (PDF 742 kb)

References

  1. 1.
    Hall RD (2011) Plant metabolomics in a nutshell: potential and future challenges. Annu Plant Rev 43:1–24. doi: 10.1002/9781444339956.ch1 Google Scholar
  2. 2.
    Kehr J (2001) High resolution spatial analysis of plant systems. Curr Opin Plant Biol 4(3):197–201CrossRefGoogle Scholar
  3. 3.
    Martin C, Bhatt K, Baumann K (2001) Shaping in plant cells. Curr Opin Plant Biol 4(6):540–549CrossRefGoogle Scholar
  4. 4.
    Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93(1):3–11. doi: 10.1093/aob/mch011 CrossRefGoogle Scholar
  5. 5.
    McCaskill D, Croteau R (1999) Strategies for bioengineering the development and metabolism of glandular tissues in plants. Nat Biotechnol 17(1):31–36. doi: 10.1038/5202 CrossRefGoogle Scholar
  6. 6.
    Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54(4):702–711. doi: 10.1111/j.1365-313X.2008.03432.x CrossRefGoogle Scholar
  7. 7.
    Luckwill LC (1943) The genus Lycopersicon, an historical, biological, and taxonomic survey of the wild and cultivated tomatoes. University Press, AberdeenGoogle Scholar
  8. 8.
    Brandt S, Kloska S, Altmann T, Kehr J (2002) Using array hybridization to monitor gene expression at the single cell level. J Exp Bot 53(379):2315–2323. doi: 10.1093/Jxb/Erf093 CrossRefGoogle Scholar
  9. 9.
    Brandt SP (2005) Microgenomics: gene expression analysis at the tissue-specific and single-cell levels. J Exp Bot 56(412):495–505. doi: 10.1093/jxb/eri066 CrossRefGoogle Scholar
  10. 10.
    Chao TC, Ros A (2008) Microfluidic single-cell analysis of intracellular compounds. J R Soc Interface 5:S139–S150. doi: 10.1098/rsif.2008.0233.focus CrossRefGoogle Scholar
  11. 11.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274(5289):998–1001CrossRefGoogle Scholar
  12. 12.
    Karrer EE, Lincoln JE, Hogenhout S, Bennett AB, Bostock RM, Martineau B, Lucas WJ, Gilchrist DG, Alexander D (1995) In-situ isolation of messenger RNA from individual plant cells: creation of cell-specific cDNA libraries. Proc Natl Acad Sci U S A 92(9):3814–3818CrossRefGoogle Scholar
  13. 13.
    Katsuragi T, Tani Y (2001) Single-cell sorting of microorganisms by flow or slide-based (including laser scanning) cytometry. Acta Biotechnol 21(2):99–115. doi: 10.1002/1521-3846(200105)21:2<99::Aid-Abio99>3.3.Co;2-O CrossRefGoogle Scholar
  14. 14.
    Nelson AR, Allbritton NL, Sims CE (2007) Rapid sampling for single-cell analysis by capillary electrophoresis. Methods Cell Biol 82:709–722. doi: 10.1016/s0091-679x(06)82026-1 CrossRefGoogle Scholar
  15. 15.
    Schulte A, Schuhmann W (2007) Single-cell microelectrochemistry. Angew Chem Int Ed 46(46):8760–8777. doi: 10.1002/anie.200604851 CrossRefGoogle Scholar
  16. 16.
    Yang Q, Zhang XL, Bao XH, Lu HJ, Zhang WJ, Wu WH, Miao HN, Jiao BH (2008) Single cell determination of nitric oxide release using capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A 1201(1):120–127. doi: 10.1016/j.chroma.2008.06.001 CrossRefGoogle Scholar
  17. 17.
    Murphy RC, Hankin JA, Barkley RM (2009) Imaging of lipid species by MALDI mass spectrometry. J Lipid Res 50:S317–S322. doi: 10.1194/jlr.R800051-JLR200 CrossRefGoogle Scholar
  18. 18.
    Seeley EH, Caprioli RM (2008) Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci U S A 105(47):18126–18131. doi: 10.1073/pnas.0801374105 CrossRefGoogle Scholar
  19. 19.
    Shroff R, Vergara F, Muck A, Svatos A, Gershenzon J (2008) Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci U S A 105(16):6196–6201. doi: 10.1073/pnas.0711730105 CrossRefGoogle Scholar
  20. 20.
    Simmons TL, Coates RC, Clark BR, Engene N, Gonzalez D, Esquenazi E, Dorrestein PC, Gerwick WH (2008) Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc Natl Acad Sci U S A 105(12):4587–4594. doi: 10.1073/pnas.0709851105 CrossRefGoogle Scholar
  21. 21.
    Yang YL, Xu YQ, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5(12):885–887. doi: 10.1038/nchembio.252 CrossRefGoogle Scholar
  22. 22.
    Gholipour Y, Nonami H, Erra-Balsells R (2008) Application of pressure probe and UV-MALDI-TOF MS for direct analysis of plant underivatized carbohydrates in subpicoliter single-cell cytoplasm extract. J Am Soc Mass Spectrom 19(12):1841–1848. doi: 10.1016/j.jasms.2008.08.006 CrossRefGoogle Scholar
  23. 23.
    Nemes P, Vertes A (2010) Atmospheric-pressure molecular imaging of biological tissues and biofilms by LAESI mass spectrometry. J Vis Exp 43:e2097. doi: 10.3791/2097 Google Scholar
  24. 24.
    Shrestha B, Vertes A (2010) Direct analysis of single cells by mass spectrometry at atmospheric pressure. J Vis Exp 43:e2144. doi: 10.3791/2144 Google Scholar
  25. 25.
    Shrestha B, Vertes A (2009) In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal Chem 81(20):8265–8271. doi: 10.1021/ac901525g CrossRefGoogle Scholar
  26. 26.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473. doi: 10.1126/science.1104404 CrossRefGoogle Scholar
  27. 27.
    Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ (2012) Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84(1):141–148. doi: 10.1021/ac2021322 CrossRefGoogle Scholar
  28. 28.
    Varner JE, Ye Z (1994) Tissue printing. FASEB J 8(6):378–384Google Scholar
  29. 29.
    Jacobsen JV, Knox RB (1973) Cytochemical localization and antigenicity of alpha-amylase in barley aleurone tissue. Planta 112(3):213–224. doi: 10.1007/Bf00385325 CrossRefGoogle Scholar
  30. 30.
    Kotecha SA, Eley DW, Turner RW (1997) Tissue printed cells from teleost electrosensory and cerebellar structures. J Comp Neurol 386(2):277–292CrossRefGoogle Scholar
  31. 31.
    Gaston SM, Soares MA, Siddiqui MM, Vu D, Lee JM, Goldner DL, Brice MJ, Shih JC, Upton MP, Perides G, Baptista J, Lavin PT, Bloch BN, Genega EM, Rubin MA, Lenkinski RE (2005) Tissue-print and print-phoresis as platform technologies for the molecular analysis of human surgical specimens: mapping tumor invasion of the prostate capsule. Nat Med 11(1):95–101. doi: 10.1038/nm1169 CrossRefGoogle Scholar
  32. 32.
    McDowell ET, Kapteyn J, Schmidt A, Li C, Kang JH, Descour A, Shi F, Larson M, Schilmiller A, An LL, Jones AD, Pichersky E, Soderlund CA, Gang DR (2011) Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol 155(1):524–539. doi: 10.1104/pp. 110.167114 CrossRefGoogle Scholar
  33. 33.
    Black C, Poile C, Langley J, Herniman J (2006) The use of pencil lead as a matrix and calibrant for matrix-assisted laser desorption/ionisation. Rapid Commun Mass Spectrom 20(7):1053–1060. doi: 10.1002/rcm.2408 CrossRefGoogle Scholar
  34. 34.
    Cha S, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization mass spectrometry and MSn of small molecules. 1. Imaging of cerebrosides directly from rat brain tissue. Anal Chem 79(6):2373–2385. doi: 10.1021/ac062251h CrossRefGoogle Scholar
  35. 35.
    Cha SW, Zhang H, Ilarslan HI, Wurtele ES, Brachova L, Nikolau BJ, Yeung ES (2008) Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J 55(2):348–360. doi: 10.1111/j.1365-313X.2008.03507.x CrossRefGoogle Scholar
  36. 36.
    Zhang H, Cha SW, Yeung ES (2007) Colloidal graphite-assisted laser desorption/ionization MS and MSn of small molecules. 2. Direct profiling and MS imaging of small metabolites from fruits. Anal Chem 79(17):6575–6584. doi: 10.1021/ac0706170 CrossRefGoogle Scholar
  37. 37.
    Ghosh B, Westbrook TC, Jones AD (2013) Comparative structural profiling of trichome specialized metabolites in tomato (Solanum lycopersicum) and S. habrochaites: acylsugar profiles revealed by UHPLC/MS and NMR. Metabolomics. doi: 10.1007/s11306-013-0585-y Google Scholar
  38. 38.
    Coates RM, Denissen JF, Juvik JA, Babka BA (1988) Identification of α-santalenoic and endo-β-bergamotenoic acids as moth oviposition stimulants from wild tomato leaves. J Org Chem 53(10):2186–2192. doi: 10.1021/Jo00245a012 CrossRefGoogle Scholar
  39. 39.
    Fernandez JA, Ochoa B, Fresnedo O, Giralt MT, Rodriguez-Puertas R (2011) Matrix-assisted laser desorption ionization imaging mass spectrometry in lipidomics. Anal Bioanal Chem 401(1):29–51. doi: 10.1007/s00216-011-4696-x CrossRefGoogle Scholar
  40. 40.
    Rauser S, Deininger SO, Suckau D, Hofler H, Walch A (2010) Approaching MALDI molecular imaging for clinical proteomic research: current state and fields of application. Expert Rev Proteomics 7(6):927–941. doi: 10.1586/epr.10.83 CrossRefGoogle Scholar
  41. 41.
    Seeley EH, Caprioli RM (2011) MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol 29(3):136–143. doi: 10.1016/j.tibtech.2010.12.002 CrossRefGoogle Scholar
  42. 42.
    Shanta SR, Kim Y, Kim YH, Kim KP (2011) Application of MALDI tissue imaging of drugs and metabolites: a new frontier for molecular histology. Biomol Ther 19(2):149–154. doi: 10.4062/Biomolther.2011.19.2.149 CrossRefGoogle Scholar
  43. 43.
    Jurchen JC, Rubakhin SS, Sweedler JV (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16(10):1654–1659. doi: 10.1016/j.jasms.2005.06.006 CrossRefGoogle Scholar
  44. 44.
    Harris PJF (2004) Fullerene-related structure of commercial glassy carbons. Philos Mag 84(29):3159–3167. doi: 10.1080/14786430410001720363 CrossRefGoogle Scholar
  45. 45.
    Huang JP, Yuan CH, Shiea J, Chen YC (1999) Rapid screening for diuretic doping agents in urine by C(60)-assisted laser-desorption-ionization-time-of-flight mass spectrometry. J Anal Toxicol 23(5):337–342CrossRefGoogle Scholar
  46. 46.
    Schilmiller A, Shi F, Kim J, Charbonneau AL, Holmes D, Jones AD, Last RL (2010) Mass spectrometry screening reveals widespread diversity in trichome specialized metabolites of tomato chromosomal substitution lines. Plant J 62(3):391–403. doi: 10.1111/j.1365-313X.2010.04154.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryMichigan State UniversityEast LansingUSA
  2. 2.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUSA

Personalised recommendations