Analytical and Bioanalytical Chemistry

, Volume 406, Issue 1, pp 183–192 | Cite as

Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis

  • Paul V. Jones
  • Alexa F. DeMichele
  • LaKeta Kemp
  • Mark A. Hayes
Research Paper


Bacteria play a significant role in both human health and disease. An estimated 9.4 million cases of foodborne illness occur in the United States each year. As a result, rapid identification and characterization of microorganisms remains an important research objective. Despite limitations, selective culturing retains a central role among a cadre of identification strategies. For the past decade, separations-based approaches to rapid bacterial identification have been under investigation. Gradient insulator dielectrophoresis (g-iDEP) promises benefits in the form of rapid and specific separation of very similar bacteria, including serotypes of a single species. Furthermore, this approach allows simultaneous concentration of analyte, facilitating detection and downstream analysis. Differentiation of three serotypes or strains of Escherichia coli bacteria is demonstrated within a single g-iDEP microchannel, based on their characteristic electrokinetic properties. Whole cells were captured and concentrated using a range of applied potentials, which generated average electric fields between 160 and 470 V/cm. Bacteria remained viable after exposure to these fields, as determined by cellular motility. These results indicate the potential g-iDEP holds in terms of both separatory power and the possibility for diagnostic applications.


Dielectrophoresis Escherichia coli Bioanalytical methods Electrokinetic separations Microfluidics 



Direct current




Electroosmotic flow




Gradient-insulator-based dielectrophoresis


Insulator dielectrophoresis


  1. 1.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583. doi:10.1073/pnas.95.12.6578 CrossRefGoogle Scholar
  2. 2.
    Hooper LV, Gordon JI (2001) Commensal host–bacterial relationships in the gut. Science 292(5519):1115–1118. doi:10.1126/science.1058709 CrossRefGoogle Scholar
  3. 3.
    Agata EMCD, Gautam S, Green WK, Tang Y-W (2002) High rate of false-negative results of the rectal swab culture method in detection of gastrointestinal colonization with vancomycin-resistant enterococci. Clin Infect Dis 34(2):167–172. doi:10.1086/338234 CrossRefGoogle Scholar
  4. 4.
    Benjamin RJ, Wagner SJ (2007) The residual risk of sepsis: modeling the effect of concentration on bacterial detection in two-bottle culture systems and an estimation of false-negative culture rates. Transfusion 47(8):1381–1389. doi:10.1111/j.1537-2995.2007.01326.x CrossRefGoogle Scholar
  5. 5.
    Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM (2011) Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis 17(1):16–22CrossRefGoogle Scholar
  6. 6.
    Black JG (1996) Microbiology: principles and applications. Prentice Hall, Upper Saddle RiverGoogle Scholar
  7. 7.
    Tenover FC (2010) Potential impact of rapid diagnostic tests on improving antimicrobial use. In: Bush K (ed) Antimicrobial therapeutics reviews, vol 1213. Annals of the New York Academy of Sciences, New York, pp 70–80. doi:10.1111/j.1749-6632.2010.05827.x Google Scholar
  8. 8.
    Suehiro J, Noutomi D, Shutou M, Hara M (2003) Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen–antibody reaction. J Electrost 58(3–4):229–246. doi:10.1016/s0304-3886(03)00062-7 CrossRefGoogle Scholar
  9. 9.
    Gascoyne PRC, Noshari J, Becker FF, Pethig R (1994) Use of dielectrophoretic collection spectra for characterizing differences between normal and cancerous cells. IEEE Trans Ind Appl 30(4):829–834. doi:10.1109/28.297896 CrossRefGoogle Scholar
  10. 10.
    Huang Y, Wang XB, Becker FF, Gascoyne PRC (1996) Membrane changes associated with the temperature-sensitive P85(gag-mos)-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation. Biochim Biophys Acta Biomembr 1282(1):76–84CrossRefGoogle Scholar
  11. 11.
    Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1994) The removal of human leukemia cells from blood using interdigitated microelectrodes. J Phys D-Appl Phys 27(12):2659–2662. doi:10.1088/0022-3727/27/12/030 CrossRefGoogle Scholar
  12. 12.
    Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1995) Separation of human breast-cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92(3):860–864CrossRefGoogle Scholar
  13. 13.
    Burt JPH, Pethig R, Gascoyne PRC, Becker FF (1990) Dielectrophoretic characterization of Friend murine erythroleukaemic cells as a measure of induced differentiation. Biochim Biophys Acta 1034(1):93–101CrossRefGoogle Scholar
  14. 14.
    Wang XB, Huang Y, Gascoyne PRC, Becker FF, Holzel R, Pethig R (1994) Changes in Friend murine erythroleukemia cell membranes during induced differentiation determined by electrorotation. Biochim Biophys Acta Biomembr 1193(2):330–344CrossRefGoogle Scholar
  15. 15.
    Petr J, Maier V (2012) Analysis of microorganisms by capillary electrophoresis. Trac Trends Anal Chem 31:9–22. doi:10.1016/j.trac.2011.07.013 CrossRefGoogle Scholar
  16. 16.
    Armstrong DW, Schulte G, Schneiderheinze JM, Westenberg DJ (1999) Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal Chem 71(24):5465–5469. doi:10.1021/ac990779z CrossRefGoogle Scholar
  17. 17.
    Srivastava SK, Daggolu PR, Burgess SC, Minerick AR (2008) Dielectrophoretic characterization of erythrocytes: positive ABO blood types. Electrophoresis 29(24):5033–5046. doi:10.1002/elps.200800166 CrossRefGoogle Scholar
  18. 18.
    Chou CF, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J 83(4):2170–2179CrossRefGoogle Scholar
  19. 19.
    Cummings E, Singh A (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75(18):4724–4731. doi:10.1021/ac0340612 CrossRefGoogle Scholar
  20. 20.
    Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79(12):4552–4557. doi:10.1021/ac070534j CrossRefGoogle Scholar
  21. 21.
    Mack C (2007) Fundamental principles of optical lithography: the science of microfabrication. Wiley, ChichesterCrossRefGoogle Scholar
  22. 22.
    Staton SJR, Jones PV, Ku G, Gilman SD, Kheterpal I, Hayes MA (2012) Manipulation and capture of A beta amyloid fibrils and monomers by DC insulator gradient dielectrophoresis (DC-iGDEP). Analyst 137(14):3227–3229. doi:10.1039/C2an35138b CrossRefGoogle Scholar
  23. 23.
    Hsiao AP, Barbee KD, Huang X (2010) Microfluidic device for capture and isolation of single cells. Proc Soc Photo Opt Instrum Eng 7759:77590W_1. doi:10.1117/12.861563
  24. 24.
    Preira P, Grandne V, Forel JM, Gabriele S, Camara M, Theodoly O (2013) Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 13(1):161–170. doi:10.1039/c2lc40847c CrossRefGoogle Scholar
  25. 25.
    Phillips JA, Xu Y, Xia Z, Fan ZH, Tan WH (2009) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 81(3):1033–1039. doi:10.1021/ac802092j CrossRefGoogle Scholar
  26. 26.
    Olitzki L (1932) Electric charge of bacterial antigens. J Immunol 22(4):251–256Google Scholar
  27. 27.
    Jones PV, Staton SJR, Hayes MA (2011) Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem 401(7):2103–2111. doi:10.1007/S00216-011-5284-9 CrossRefGoogle Scholar
  28. 28.
    Chen KP, Pacheco JR, Hayes MA, Staton SJR (2009) Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Electrophoresis 30(9):1441–1448. doi:10.1002/elps.200800833 CrossRefGoogle Scholar
  29. 29.
    Hamadi F, Latrache H, Zahir H, Elghmari A, Timinouni M, Ellouali M (2008) The relation between Escherichia coli surface functional groups' composition and their physicochemical properties. Braz J Microbiol 39(1):10–15. doi:10.1590/s1517-83822008000100003 CrossRefGoogle Scholar
  30. 30.
    Amory DE, Mozes N, Hermesse MP, Leonard AJ, Rouxhet PG (1988) Chemical analysis of the surface of microorganisms by X-ray photoelectron spectroscopy. Fems Microbiol Lett 49(1):107–110. doi:10.1111/j.1574-6968.1988.tb02690.x CrossRefGoogle Scholar
  31. 31.
    El Ghmari A, Latrache H, Hamadi F, El Louali M, El Bouadili A, Hakkou A, Bourlioux P (2002) Influence of surface cell structures on physicochemical properties of Escherichia coli. Microbiologica 25(2):173–178Google Scholar
  32. 32.
    Latrache H, Mozes N, Pelletier C, Bourlioux P (1994) Chemical and physicochemical properties of Escherichia coli: variations among three strains and influence of culture conditions. Colloids Surf B: Biointerfaces 2(1–3):47–56. doi:10.1016/0927-7765(94)80017-0 CrossRefGoogle Scholar
  33. 33.
    Lytle DA, Rice EW, Johnson CH, Fox KR (1999) Electrophoretic mobilities of Escherichia coli O157: H7 and wild-type Escherichia coli strains. Appl Environ Microbiol 65(7):3222–3225Google Scholar
  34. 34.
    Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications (vol 4, 022811, 2010). Biomicrofluidics 4 (3). doi:10.1063/1.3474458
  35. 35.
    Castellarnau M, Errachid A, Madrid C, Juarez A, Samitier J (2006) Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys J 91(10):3937–3945. doi:10.1526/biophysj.106.088534 CrossRefGoogle Scholar
  36. 36.
    Weiss NG, Jones PV, Mahanti P, Chen KP, Taylor TJ, Hayes MA (2011) Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis. Electrophoresis 32(17):2292–2297. doi:10.1002/Elps.201100034 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paul V. Jones
    • 1
  • Alexa F. DeMichele
    • 1
  • LaKeta Kemp
    • 1
  • Mark A. Hayes
    • 1
  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations