Analytical and Bioanalytical Chemistry

, Volume 406, Issue 1, pp 183–192 | Cite as

Differentiation of Escherichia coli serotypes using DC gradient insulator dielectrophoresis

  • Paul V. Jones
  • Alexa F. DeMichele
  • LaKeta Kemp
  • Mark A. Hayes
Research Paper

Abstract

Bacteria play a significant role in both human health and disease. An estimated 9.4 million cases of foodborne illness occur in the United States each year. As a result, rapid identification and characterization of microorganisms remains an important research objective. Despite limitations, selective culturing retains a central role among a cadre of identification strategies. For the past decade, separations-based approaches to rapid bacterial identification have been under investigation. Gradient insulator dielectrophoresis (g-iDEP) promises benefits in the form of rapid and specific separation of very similar bacteria, including serotypes of a single species. Furthermore, this approach allows simultaneous concentration of analyte, facilitating detection and downstream analysis. Differentiation of three serotypes or strains of Escherichia coli bacteria is demonstrated within a single g-iDEP microchannel, based on their characteristic electrokinetic properties. Whole cells were captured and concentrated using a range of applied potentials, which generated average electric fields between 160 and 470 V/cm. Bacteria remained viable after exposure to these fields, as determined by cellular motility. These results indicate the potential g-iDEP holds in terms of both separatory power and the possibility for diagnostic applications.

Keywords

Dielectrophoresis Escherichia coli Bioanalytical methods Electrokinetic separations Microfluidics 

Abbreviations

DC

Direct current

DEP

Dielectrophoresis

EOF

Electroosmotic flow

EP

Electrophoresis

g-iDEP

Gradient-insulator-based dielectrophoresis

iDEP

Insulator dielectrophoresis

References

  1. 1.
    Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583. doi:10.1073/pnas.95.12.6578 CrossRefGoogle Scholar
  2. 2.
    Hooper LV, Gordon JI (2001) Commensal host–bacterial relationships in the gut. Science 292(5519):1115–1118. doi:10.1126/science.1058709 CrossRefGoogle Scholar
  3. 3.
    Agata EMCD, Gautam S, Green WK, Tang Y-W (2002) High rate of false-negative results of the rectal swab culture method in detection of gastrointestinal colonization with vancomycin-resistant enterococci. Clin Infect Dis 34(2):167–172. doi:10.1086/338234 CrossRefGoogle Scholar
  4. 4.
    Benjamin RJ, Wagner SJ (2007) The residual risk of sepsis: modeling the effect of concentration on bacterial detection in two-bottle culture systems and an estimation of false-negative culture rates. Transfusion 47(8):1381–1389. doi:10.1111/j.1537-2995.2007.01326.x CrossRefGoogle Scholar
  5. 5.
    Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM (2011) Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis 17(1):16–22CrossRefGoogle Scholar
  6. 6.
    Black JG (1996) Microbiology: principles and applications. Prentice Hall, Upper Saddle RiverGoogle Scholar
  7. 7.
    Tenover FC (2010) Potential impact of rapid diagnostic tests on improving antimicrobial use. In: Bush K (ed) Antimicrobial therapeutics reviews, vol 1213. Annals of the New York Academy of Sciences, New York, pp 70–80. doi:10.1111/j.1749-6632.2010.05827.x Google Scholar
  8. 8.
    Suehiro J, Noutomi D, Shutou M, Hara M (2003) Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen–antibody reaction. J Electrost 58(3–4):229–246. doi:10.1016/s0304-3886(03)00062-7 CrossRefGoogle Scholar
  9. 9.
    Gascoyne PRC, Noshari J, Becker FF, Pethig R (1994) Use of dielectrophoretic collection spectra for characterizing differences between normal and cancerous cells. IEEE Trans Ind Appl 30(4):829–834. doi:10.1109/28.297896 CrossRefGoogle Scholar
  10. 10.
    Huang Y, Wang XB, Becker FF, Gascoyne PRC (1996) Membrane changes associated with the temperature-sensitive P85(gag-mos)-dependent transformation of rat kidney cells as determined by dielectrophoresis and electrorotation. Biochim Biophys Acta Biomembr 1282(1):76–84CrossRefGoogle Scholar
  11. 11.
    Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1994) The removal of human leukemia cells from blood using interdigitated microelectrodes. J Phys D-Appl Phys 27(12):2659–2662. doi:10.1088/0022-3727/27/12/030 CrossRefGoogle Scholar
  12. 12.
    Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC (1995) Separation of human breast-cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A 92(3):860–864CrossRefGoogle Scholar
  13. 13.
    Burt JPH, Pethig R, Gascoyne PRC, Becker FF (1990) Dielectrophoretic characterization of Friend murine erythroleukaemic cells as a measure of induced differentiation. Biochim Biophys Acta 1034(1):93–101CrossRefGoogle Scholar
  14. 14.
    Wang XB, Huang Y, Gascoyne PRC, Becker FF, Holzel R, Pethig R (1994) Changes in Friend murine erythroleukemia cell membranes during induced differentiation determined by electrorotation. Biochim Biophys Acta Biomembr 1193(2):330–344CrossRefGoogle Scholar
  15. 15.
    Petr J, Maier V (2012) Analysis of microorganisms by capillary electrophoresis. Trac Trends Anal Chem 31:9–22. doi:10.1016/j.trac.2011.07.013 CrossRefGoogle Scholar
  16. 16.
    Armstrong DW, Schulte G, Schneiderheinze JM, Westenberg DJ (1999) Separating microbes in the manner of molecules. 1. Capillary electrokinetic approaches. Anal Chem 71(24):5465–5469. doi:10.1021/ac990779z CrossRefGoogle Scholar
  17. 17.
    Srivastava SK, Daggolu PR, Burgess SC, Minerick AR (2008) Dielectrophoretic characterization of erythrocytes: positive ABO blood types. Electrophoresis 29(24):5033–5046. doi:10.1002/elps.200800166 CrossRefGoogle Scholar
  18. 18.
    Chou CF, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J 83(4):2170–2179CrossRefGoogle Scholar
  19. 19.
    Cummings E, Singh A (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75(18):4724–4731. doi:10.1021/ac0340612 CrossRefGoogle Scholar
  20. 20.
    Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79(12):4552–4557. doi:10.1021/ac070534j CrossRefGoogle Scholar
  21. 21.
    Mack C (2007) Fundamental principles of optical lithography: the science of microfabrication. Wiley, ChichesterCrossRefGoogle Scholar
  22. 22.
    Staton SJR, Jones PV, Ku G, Gilman SD, Kheterpal I, Hayes MA (2012) Manipulation and capture of A beta amyloid fibrils and monomers by DC insulator gradient dielectrophoresis (DC-iGDEP). Analyst 137(14):3227–3229. doi:10.1039/C2an35138b CrossRefGoogle Scholar
  23. 23.
    Hsiao AP, Barbee KD, Huang X (2010) Microfluidic device for capture and isolation of single cells. Proc Soc Photo Opt Instrum Eng 7759:77590W_1. doi:10.1117/12.861563
  24. 24.
    Preira P, Grandne V, Forel JM, Gabriele S, Camara M, Theodoly O (2013) Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 13(1):161–170. doi:10.1039/c2lc40847c CrossRefGoogle Scholar
  25. 25.
    Phillips JA, Xu Y, Xia Z, Fan ZH, Tan WH (2009) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 81(3):1033–1039. doi:10.1021/ac802092j CrossRefGoogle Scholar
  26. 26.
    Olitzki L (1932) Electric charge of bacterial antigens. J Immunol 22(4):251–256Google Scholar
  27. 27.
    Jones PV, Staton SJR, Hayes MA (2011) Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem 401(7):2103–2111. doi:10.1007/S00216-011-5284-9 CrossRefGoogle Scholar
  28. 28.
    Chen KP, Pacheco JR, Hayes MA, Staton SJR (2009) Insulator-based dielectrophoretic separation of small particles in a sawtooth channel. Electrophoresis 30(9):1441–1448. doi:10.1002/elps.200800833 CrossRefGoogle Scholar
  29. 29.
    Hamadi F, Latrache H, Zahir H, Elghmari A, Timinouni M, Ellouali M (2008) The relation between Escherichia coli surface functional groups' composition and their physicochemical properties. Braz J Microbiol 39(1):10–15. doi:10.1590/s1517-83822008000100003 CrossRefGoogle Scholar
  30. 30.
    Amory DE, Mozes N, Hermesse MP, Leonard AJ, Rouxhet PG (1988) Chemical analysis of the surface of microorganisms by X-ray photoelectron spectroscopy. Fems Microbiol Lett 49(1):107–110. doi:10.1111/j.1574-6968.1988.tb02690.x CrossRefGoogle Scholar
  31. 31.
    El Ghmari A, Latrache H, Hamadi F, El Louali M, El Bouadili A, Hakkou A, Bourlioux P (2002) Influence of surface cell structures on physicochemical properties of Escherichia coli. Microbiologica 25(2):173–178Google Scholar
  32. 32.
    Latrache H, Mozes N, Pelletier C, Bourlioux P (1994) Chemical and physicochemical properties of Escherichia coli: variations among three strains and influence of culture conditions. Colloids Surf B: Biointerfaces 2(1–3):47–56. doi:10.1016/0927-7765(94)80017-0 CrossRefGoogle Scholar
  33. 33.
    Lytle DA, Rice EW, Johnson CH, Fox KR (1999) Electrophoretic mobilities of Escherichia coli O157: H7 and wild-type Escherichia coli strains. Appl Environ Microbiol 65(7):3222–3225Google Scholar
  34. 34.
    Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications (vol 4, 022811, 2010). Biomicrofluidics 4 (3). doi:10.1063/1.3474458
  35. 35.
    Castellarnau M, Errachid A, Madrid C, Juarez A, Samitier J (2006) Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys J 91(10):3937–3945. doi:10.1526/biophysj.106.088534 CrossRefGoogle Scholar
  36. 36.
    Weiss NG, Jones PV, Mahanti P, Chen KP, Taylor TJ, Hayes MA (2011) Dielectrophoretic mobility determination in DC insulator-based dielectrophoresis. Electrophoresis 32(17):2292–2297. doi:10.1002/Elps.201100034 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paul V. Jones
    • 1
  • Alexa F. DeMichele
    • 1
  • LaKeta Kemp
    • 1
  • Mark A. Hayes
    • 1
  1. 1.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations