Analytical and Bioanalytical Chemistry

, Volume 406, Issue 1, pp 225–237 | Cite as

A qualitative/quantitative approach for the detection of 37 tryptamine-derived designer drugs, 5 β-carbolines, ibogaine, and yohimbine in human urine and plasma using standard urine screening and multi-analyte approaches

  • Markus R. Meyer
  • Achim Caspar
  • Simon D. Brandt
  • Hans H. Maurer
Research Paper

Abstract

The first synthetic tryptamines have entered the designer drug market in the late 1990s and were distributed as psychedelic recreational drugs. In the meantime, several analogs have been brought onto the market indicating a growing interest in this drug class. So far, only scarce analytical data were available on the detectability of tryptamines in human biosamples. Therefore, the aim of the presented study was the development and full validation of a method for their detection in human urine and plasma and their quantification in human plasma. The liquid chromatography-linear ion trap mass spectrometry method presented covered 37 tryptamines as well as five β-carbolines, ibogaine, and yohimbine. Compounds were analyzed after protein precipitation of urine or fast liquid–liquid extraction of plasma using an LXQ linear ion trap coupled to an Accela ultra ultra high-performance liquid chromatography system. Data mining was performed via information-dependent acquisition or targeted product ion scan mode with positive electrospray ionization. The assay was selective for all tested substances with limits of detection in urine between 10 and 100 ng/mL and in plasma between 1 and 100 ng/mL. A validated quantification in plasma according to international recommendation could be demonstrated for 33 out of 44 analytes.

Keywords

Tryptamines Analytical toxicology Mass spectrometry Human urine Human plasma LC-MSn 

References

  1. 1.
    European Commission (2005) Official J EU:L 127:Google Scholar
  2. 2.
    United Nations Office on Drugs and Crime (UNODC) (2013) The challenge of new psychoactive substances. Global SMART Programme. http://www.unodc.org/documents/scientific/NPS_2013_SMART.pdf, pp. 1–122
  3. 3.
    Ott J (1996) Pharmacotheon: entheogenic drugs, their plant sources and history. Natural Products, KennewickGoogle Scholar
  4. 4.
    Ott J (2001) Shamanic snuffs or entheogenic errhines. Entheobotanica, SolothurnGoogle Scholar
  5. 5.
    Szara S (1970) DMT (N, N-Dimethyltryptamine) and homologues: clinical and pharmacological considerations. In: Efron DH (ed) Psychotomimetic drugs. Raven, New York, pp 275–298Google Scholar
  6. 6.
    Shulgin A, Shulgin A (1997) Tihkal, the continuation. Transform Press, BerkeleyGoogle Scholar
  7. 7.
    Shulgin AT (2003) Basic pharmacology and effects. In: Laing RR (ed) Hallucinogens. A forensic drug handbook. Elsevier Science, London, pp 67–137Google Scholar
  8. 8.
    Nichols DE (2004) Pharmacol Ther 101:131–181CrossRefGoogle Scholar
  9. 9.
    Ray TS (2010) PLoS One 5:e9019CrossRefGoogle Scholar
  10. 10.
    Shulgin AT, Carter MF (1980) Commun Psychopharmacol 4:363–369Google Scholar
  11. 11.
    Meatherall R, Sharma P (2003) J Anal Toxicol 27:313–317CrossRefGoogle Scholar
  12. 12.
    Vorce SP, Sklerov JH (2004) J Anal Toxicol 28:407–410CrossRefGoogle Scholar
  13. 13.
    Wilson JM, McGeorge F, Smolinske S, Meatherall R (2005) Forensic Sci Int 148:31–36CrossRefGoogle Scholar
  14. 14.
    Tanaka E, Kamata T, Katagi M, Tsuchihashi H, Honda K (2006) Forensic Sci Int 163:152–154CrossRefGoogle Scholar
  15. 15.
    Smolinske SC, Rastogi R, Schenkel S (2005) J Med Toxicol 1:22–25CrossRefGoogle Scholar
  16. 16.
  17. 17.
    Arunotayanun W, Dalley JW, Huang XP, Setola V, Treble R, Iversen L, Roth BL, Gibbons S (2013) Bioorg Med Chem Lett 23:3411–3415CrossRefGoogle Scholar
  18. 18.
    Corkery JM, Durkin E, Elliott S, Schifano F, Ghodse AH (2012) Prog Neuropsychopharmacol Biol Psychiatry 39:259–262CrossRefGoogle Scholar
  19. 19.
    Martins CPB, Freeman S, Alder JF, Passie T, Brandt SD (2010) Trends Anal Chem 29:285–296CrossRefGoogle Scholar
  20. 20.
    Brandt SD, Martins CPB (2010) Trends Anal Chem 29:858–869CrossRefGoogle Scholar
  21. 21.
    Gaujac A, Navickiene S, Collins MI, Brandt SD, de Andrade JB (2012) Drug Test Anal 4:636–648CrossRefGoogle Scholar
  22. 22.
    Barker SA, McIlhenny EH, Strassman R (2012) Drug Test Anal 4:617–635CrossRefGoogle Scholar
  23. 23.
    McKenna DJ, Towers GH, Abbott F (1984) J Ethnopharmacol 10:195–223CrossRefGoogle Scholar
  24. 24.
    McIlhenny EH, Riba J, Barbanoj MJ, Strassman R, Barker SA (2011) Biomed Chromatogr 25:970–984CrossRefGoogle Scholar
  25. 25.
    Riba J, Valle M, Urbano G, Yritia M, Morte A, Barbanoj MJ (2003) J Pharmacol Exp Ther 306:73–83CrossRefGoogle Scholar
  26. 26.
    Riba J, McIlhenny EH, Valle M, Bouso JC, Barker SA (2012) Drug Test Anal 4:610–616CrossRefGoogle Scholar
  27. 27.
    Callaway JC, Raymon LP, Hearn WL, McKenna DJ, Grob CS, Brito GS, Mash DC (1996) J Anal Toxicol 20:492–497CrossRefGoogle Scholar
  28. 28.
    Hasler F, Bourquin D, Brenneisen R, Bar T, Vollenweider FX (1997) Pharm Acta Helv 72:175–184CrossRefGoogle Scholar
  29. 29.
    Wohlfarth A, Weinmann W, Dresen S (2010) Anal Bioanal Chem 396:2403–2414CrossRefGoogle Scholar
  30. 30.
    Wohlfarth A, Weinmann W (2010) Bioanalysis 2:965–979CrossRefGoogle Scholar
  31. 31.
    Jin MJ, Jin C, Kim JY, In MK, Kwon OS, Yoo HH (2011) J Forensic Sci 56:1044–1048CrossRefGoogle Scholar
  32. 32.
    Katagi M, Kamata T, Zaitsu K, Shima N, Kamata H, Nakanishi K, Nishioka H, Miki A, Tsuchihashi H (2010) Ther Drug Monit 32:328–331CrossRefGoogle Scholar
  33. 33.
    Brandt SD, Tirunarayanapuram SS, Freeman S, Dempster N, Barker SA, Daley PF, Cozzi NV, Martins CPB (2008) J Label Compd Radiopharm 51:423–429CrossRefGoogle Scholar
  34. 34.
    Brandt SD, Freeman S, Fleet IA, McGagh P, Alder JF (2005) Analyst 130:330–344CrossRefGoogle Scholar
  35. 35.
    Brandt SD, Tearavarich R, Dempster N, Cozzi NV, Daley PF (2012) Drug Test Anal 4:24–32CrossRefGoogle Scholar
  36. 36.
    Tearavarich R, Hahnvajanawong V, Dempster N, Daley PF, Cozzi NV, Brandt SD (2011) Drug Test Anal 3:597–608CrossRefGoogle Scholar
  37. 37.
    Wissenbach DK, Meyer MR, Remane D, Weber AA, Maurer HH (2011) Anal Bioanal Chem 400:79–88CrossRefGoogle Scholar
  38. 38.
    Remane D, Meyer MR, Peters FT, Wissenbach DK, Maurer HH (2010) Anal Bioanal Chem 397:2303–2314CrossRefGoogle Scholar
  39. 39.
    Wissenbach DK, Meyer MR, Remane D, Philipp AA, Weber AA, Maurer HH (2011) Anal Bioanal Chem 400:3481–3489CrossRefGoogle Scholar
  40. 40.
    Maurer HH, Wissenbach DK, Weber AA (2013) Maurer/Wissenbach/Weber MWW LC-MSn library of drugs, poisons, and their metabolites. Wiley-VCH, WeinheimGoogle Scholar
  41. 41.
    European Medicines Agency (2009) Guidelines for the validation of analytical methods used in residue depletion studies. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500040499.pdf, pp. 1–19
  42. 42.
    European Commission (2012) Method validation and quality control procedures for pesticide residues analysis in food and feed. Guidance documents. http://ec.europa.eu/food/plant/protection/resources/qualcontrol_en.pdf, pp. 1–40
  43. 43.
    European Communities (2002) Off J Eur Commun 221:8–32Google Scholar
  44. 44.
    Peters FT, Paul LD, Musshoff F, Aebi B, Auwaerter V, Kraemer T, Skopp G (2009) Toxichem Krimtech 76:185–208 (http://www.gtfch.org/cms/images/stories/media/tk/tk76_3/richtlinieanhangb2009-06-01.pdf)Google Scholar
  45. 45.
    Wille SM, Peters FT, Di-Fazio V, Samyn N (2011) Accred Qual Assur 16:279–292CrossRefGoogle Scholar
  46. 46.
    Scientific Working Group for Forensic Toxicology S (2013) Standard practices for method validation in forensic toxicology. http://www.swgtox.org/documents/Validation3.pdf, pp. 1–52
  47. 47.
    United Nations Office on Drugs and Crime (UNODC) (2009) Guidance for the validation of analytical methodology and calibration of equipment used for testing of illicit drugs in seized materials and biological specimens. http://www.unodc.org/unodc/en/scientists/guidance-for-the-validation-of-analytical-methodology.html, pp. 1–76
  48. 48.
    Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030CrossRefGoogle Scholar
  49. 49.
    Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ, McKay G, Miller KJ, Patnaik RN, Powell ML, Tonelli A, Viswanathan CT, Yacobi A (2000) Pharm Res 17:1551–1557CrossRefGoogle Scholar
  50. 50.
    Peters FT, Hartung M, Herbold M, Schmitt G, Daldrup T, Musshoff F (2004) Toxichem Krimtech 71:146–154 (http://www.gtfch.org/cms/images/stories/media/tk/tk71_3/Peters1.pdf)Google Scholar
  51. 51.
    Peters FT, Paul LD, Musshoff F, Aebi B, Auwaerter V, Kraemer T, Skopp G (2009) Toxichem Krimtech 76:185–208 (https://www.gtfch.org/cms/files/GTFCh_Richtlinie_Anhang%20B_Validierung_Version%201.pdf)Google Scholar
  52. 52.
    Viswanathan CT, Bansal S, Booth B, DeStefano AJ, Rose MJ, Sailstad J, Shah VP, Skelly JP, Swann PG, Weiner R (2007) Pharm Res 24:1962–1973CrossRefGoogle Scholar
  53. 53.
    Remane D, Meyer MR, Wissenbach DK, Maurer HH (2010) Rapid Commun Mass Spectrom 24:3103–3108CrossRefGoogle Scholar
  54. 54.
    European Medicines Agency (2011) Guideline on bioanalytical method validation. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Markus R. Meyer
    • 1
  • Achim Caspar
    • 1
  • Simon D. Brandt
    • 2
  • Hans H. Maurer
    • 1
  1. 1.Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and ToxicologySaarland UniversityHomburgGermany
  2. 2.School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations