Skip to main content
Log in

Quantum dot–NBD–liposome luminescent probes for monitoring phospholipase A2 activity

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we describe the fabrication and characterization of new liposome encapsulated quantum dot–fluorescence resonance energy transfer (FRET)-based probes for monitoring the enzymatic activity of phospholipase A2. To fabricate the probes, luminescent CdSe/ZnS quantum dots capped with trioctylphosphine oxide (TOPO) ligands were incorporated into the lipid bilayer of unilamellar liposomes with an average diameter of approximately 100 nm. Incorporating TOPO capped quantum dots in liposomes enabled their use in aqueous solution while maintaining their hydrophobicity and excellent photophysical properties. The phospholipid bilayer was labeled with the fluorophore NBD C6-HPC (2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexa decanoyl-sn-glycero-3-phosphocholine). The luminescent quantum dots acted as FRET donors and the NBD dye molecules acted as FRET acceptors. The probe response was based on FRET interactions between the quantum dots and the NBD dye molecules. The NBD dye molecules were cleaved and released to the solution in the presence of the enzyme phospholipase A2. This led to an increase of the luminescence of the quantum dots and to a corresponding decrease in the fluorescence of the NBD molecules, because of a decrease in FRET efficiency between the quantum dots and the NBD dye molecules. Because the quantum dots were not attached covalently to the phospholipids, they did not hinder the enzyme activity as a result of steric effects. The probes were able to detect amounts of phospholipase A2 as low as 0.0075 U mL−1 and to monitor enzyme activity in real time. The probes were also used to screen phospholipase A2 inhibitors. For example, we found that the inhibition efficiency of MJ33 (1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol) was higher than that of OBAA (3-(4-octadecyl)benzoylacrylic acid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Michalet X, Pinaud F, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  2. Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14(9):497–504

    Article  CAS  Google Scholar 

  3. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  4. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  Google Scholar 

  5. Peng X, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  CAS  Google Scholar 

  6. Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Article  CAS  Google Scholar 

  7. Qu LH, Peng XG (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055

    Article  CAS  Google Scholar 

  8. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  9. Reiss P, Bleuse J, Pron A (2002) Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett 2(7):781–784

    Article  CAS  Google Scholar 

  10. Malik MA, O’Brien P, Revaprasadu N (2002) A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem Mater 14:2004–2010

    Article  CAS  Google Scholar 

  11. Lee A, Coombs NA, Gourevich I, Kumacheva E, Scholes GD (2009) Lamellar envelopes of semiconductor nanocrystals. J Am Chem Soc 131:10182–10188

    Article  CAS  Google Scholar 

  12. Sigot V, Arndt-Jovin DJ, Jovin TM (2010) Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes. Bioconjug Chem 21:1465–1472

    Article  CAS  Google Scholar 

  13. Bothum GD, Rabideau AE, Stoner MA (2009) Hepatoma cell uptake of cationic multifluorescent quantum dot liposomes. J Phys Chem Lett B 113:7725–7728

    Article  Google Scholar 

  14. Barber K, Mala RR, Lambert MP, Qiu RZ, MacDonald RC, Klein WL (1996) Delivery of membrane impermeant membraneimpermeant fluorescent probes into living neural cell populations by lipotransfer. Neurosci Lett 207:17–20

    Article  CAS  Google Scholar 

  15. Shan GY, Li D, Feng LY, Kong XG, Liu YC, Bai YB, Li TJ, Sun JZ (2005) Encapsulation of CdSe/ZnSe quantum dots by liposome complexes. Chin J Chem 23:1688–1692

    Article  CAS  Google Scholar 

  16. Weng KC, Noble C, Papahadjopoulos-Sternberg B, Chen FF, Drummond DC, Kirpotin DB, Wang D, Hom YK, Hann B, Park JW (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 8:2851–2857

    Article  CAS  Google Scholar 

  17. Van den Bosch H (1980) Intracellular phospholipases A. Biochim Biophys Acta 604:191–246

    Article  Google Scholar 

  18. Waite M (1987) In phospholipases. Plenum Publishing Corp, New York

    Book  Google Scholar 

  19. Dennis EA, Rhee SG, Billah MM, Hannun YA (1991) Role of phospholipases in generating second messengers in signal transduction. FASEB J 5:2068–2077

    CAS  Google Scholar 

  20. Van Kuijk GM, Sevenian A, Handelman GJ, Dratz EA (1987) A new role for phospholipase A2: protection from peroxidation damage. Trends Biochem Sci 12:31–34

    Article  Google Scholar 

  21. Nevalainen TJ (1993) Serum phospholipases A2 in inflammatory diseases. Clin Chem 39:2453–2459

    CAS  Google Scholar 

  22. Vadas P, Pruzanski W (1986) Role of secretory phospholipases A2 in the pathobiology of disease. Lab Investig 55:391–404

    CAS  Google Scholar 

  23. Rådmark O (2003) 5-lipoxygenase-derived leukotriene: mediators also of atherosclerotic inflammation. Arterioscler Thromb Vasc Biol 23:1140–1142

    Article  Google Scholar 

  24. Feltenmark S, Gautam N, Brunnström A, Griffiths W, Backman L, Edenius C, Lindbom L, Björkholm M, Claesson HE (2008) Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells. Proc Natl Acad Sci 105:680–685

    Article  CAS  Google Scholar 

  25. Dwyer JH, Allayee H, Dwyer KM, Fan J, Wu H, Mar R, Lusis AJ, Mehrabian M (2004) Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N Engl J Med 350:29–37

    Article  CAS  Google Scholar 

  26. Silva IT, Mello APQ, Damasceno NRT (2011) Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A2 (Lp-PLA2): a review. Lipids Health Dis 10(170):1–10

    Google Scholar 

  27. Reynolds LJ, Washburn WN, Deems RA, Dennis EA (1991) Assay strategies and methods for phospholipases. Methods Enzymol 197:3–23

    Article  CAS  Google Scholar 

  28. Wilton DC (1990) A continuous fluorescence displacement assay for the measurement of phospholipase A2 and other lipases that release long-chain fatty acids. Biochem J 266:435–439

    CAS  Google Scholar 

  29. Feng L, Manabe K, Shope JC, Widmer S, DeWald DB, Prestwich GD (2002) A real-time fluorogenic phospholipase A(2) assay for biochemical and cellular activity measurements. Chem Biol 9:795–803

    Article  CAS  Google Scholar 

  30. Chemburu S, Ji E, Casana Y, Wu Y, Buranda T, Schanze KS, Lopez GP, Whitten DG (2008) Conjugated polyelectrolyte supported bead based assays for phospholipase A2 activity. J Phys Chem B 112:14492–14499

    Article  CAS  Google Scholar 

  31. Wichmann O, Wittbrodt J, Schultz C (2006) A small-molecule FRET probe to monitor phospholipase A2 Activity in Cells and organisms. Angew Chem Int Ed 45:508–512

    Article  CAS  Google Scholar 

  32. Santhosh K, Patra S, Soumya S, Khara DC, Samanta A (2011) Fluorescence quenching of CdS quantum dots by 4- azetidinyl-7-nitrobenz-2-oxa-1,3-diazole: a mechanistic study. ChemPhysChem 12:2735–2741

    Article  CAS  Google Scholar 

  33. Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett 4:409–413

    Article  CAS  Google Scholar 

  34. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  35. Al-Jamal WT, Al-Jamal KT, Tian B, Lacerda L, Bomans PH, Frederik PM, Kostarelos K (2008) Lipid−quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano 2:408–418

    Article  CAS  Google Scholar 

  36. Tsukanova V, Grainger DW, Salesse C (2002) Monolayer behavior of NBD-labeled phospholipids at the air/water interface. Langmuir 18:5539–5550

    Article  CAS  Google Scholar 

  37. Blagoi G, Rosenzweig N, Rosenzweig Z (2005) Design, synthesis and application of particle-based fluorescence resonance energy transfer sensors for carbohydrates and glycoproteins. Anal Chem 77:393–399

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant CHE-0717526 and by DOD/DARPA grant HR0011-07-1-0032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeev Rosenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kethineedi, V.R., Crivat, G., Tarr, M.A. et al. Quantum dot–NBD–liposome luminescent probes for monitoring phospholipase A2 activity. Anal Bioanal Chem 405, 9729–9737 (2013). https://doi.org/10.1007/s00216-013-7422-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7422-z

Keywords

Navigation