Analytical and Bioanalytical Chemistry

, Volume 406, Issue 8, pp 2197–2204 | Cite as

Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid–liquid microextraction for determination of 2,4,6-trinitrotoluene

  • Elena Fernández
  • Lorena VidalEmail author
  • Jesús Iniesta
  • Jonathan P. Metters
  • Craig E. Banks
  • Antonio CanalsEmail author
Research Paper
Part of the following topical collections:
  1. Microextraction Techniques


A novel method is reported, whereby screen-printed electrodes (SPELs) are combined with dispersive liquid–liquid microextraction. In-situ ionic liquid (IL) formation was used as an extractant phase in the microextraction technique and proved to be a simple, fast and inexpensive analytical method. This approach uses miniaturized systems both in sample preparation and in the detection stage, helping to develop environmentally friendly analytical methods and portable devices to enable rapid and onsite measurement. The microextraction method is based on a simple metathesis reaction, in which a water-immiscible IL (1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [Hmim][NTf2]) is formed from a water-miscible IL (1-hexyl-3-methylimidazolium chloride, [Hmim][Cl]) and an ion-exchange reagent (lithium bis[(trifluoromethyl)sulfonyl]imide, LiNTf2) in sample solutions. The explosive 2,4,6-trinitrotoluene (TNT) was used as a model analyte to develop the method. The electrochemical behavior of TNT in [Hmim][NTf2] has been studied in SPELs. The extraction method was first optimized by use of a two-step multivariate optimization strategy, using Plackett–Burman and central composite designs. The method was then evaluated under optimum conditions and a good level of linearity was obtained, with a correlation coefficient of 0.9990. Limits of detection and quantification were 7 μg L−1 and 9 μg L−1, respectively. The repeatability of the proposed method was evaluated at two different spiking levels (20 and 50 μg L−1), and coefficients of variation of 7 % and 5 % (n = 5) were obtained. Tap water and industrial wastewater were selected as real-world water samples to assess the applicability of the method.


Liquid-phase microextraction Dispersive liquid–liquid microextraction Ionic liquid Screen-printed electrodes 2,4,6-Trinitrotoluene Water samples 



The authors would like to thank the Spanish Ministry of Science and Innovation (project n. CTQ2011-23968), Generalitat Valenciana (Spain) (projects n. ACOMP/2013/072 and PROMETEO/2012/038) and Universidad de Alicante (Spain) (project n. GRE12-45) for the financial support. E.F. also thanks Generalitat Valenciana for her fellowship.

Supplementary material

216_2013_7415_MOESM1_ESM.pdf (124 kb)
ESM 1 (PDF 123 kb)


  1. 1.
    Risticevic S, Niri VH, Vuckovic D, Pawliszyn J (2009) Anal Bioanal Chem 393:781–795CrossRefGoogle Scholar
  2. 2.
    Pena-Pereira F, Lavilla I, Bendicho C (2010) Trends Anal Chem 29:617–628CrossRefGoogle Scholar
  3. 3.
    Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9CrossRefGoogle Scholar
  4. 4.
    Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2010) Trends Anal Chem 29:602–616CrossRefGoogle Scholar
  5. 5.
    Sun P, Armstrong DW (2010) Anal Chim Acta 661:1–16CrossRefGoogle Scholar
  6. 6.
    Zhou Q, Bai H, Xie G, Xiao J (2008) J Chromatogr A 1177:43–49CrossRefGoogle Scholar
  7. 7.
    Baghdadi M, Shemirani F (2009) Anal Chim Acta 634:186–191CrossRefGoogle Scholar
  8. 8.
    Yao C, Anderson JL (2009) Anal Bioanal Chem 395:1491–1502CrossRefGoogle Scholar
  9. 9.
    Sun X-M, Sun Y, Wu L-W, Jiang C-Z, Yu X, Gao Y, Wang L-Y, Song D-Q (2012) Anal Methods 4:2074–2080CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Lee HK (2012) Anal Chim Acta 750:120–126CrossRefGoogle Scholar
  11. 11.
    Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2008) Anal Chem 80:793–800CrossRefGoogle Scholar
  12. 12.
    Chisvert A, Román IP, Vidal L, Canals A (2009) J Chromatogr A 1216:1290–1295CrossRefGoogle Scholar
  13. 13.
    Metters JP, Kadara RO, Banks CE (2011) Analyst 136:1067–1076CrossRefGoogle Scholar
  14. 14.
    Buzzeo MC, Evans RG, Compton RG (2004) ChemPhysChem 5:1106–1120CrossRefGoogle Scholar
  15. 15.
    Pichtel J (2012) Appl Environ Soil Sci 2012:1–33CrossRefGoogle Scholar
  16. 16.
    Cortada C, Vidal L, Canals A (2011) Talanta 85:2546–2552CrossRefGoogle Scholar
  17. 17.
    Sun Q, Chen Z, Yuan D, Yuan D, Yu C-P, Mallavarapu M, Naidu R (2011) Chromatographia 73:631–637CrossRefGoogle Scholar
  18. 18.
    Giordano BC, Burgi DS, Collins GE (2010) J Chromatogr A 1217:4487–4493CrossRefGoogle Scholar
  19. 19.
    Goldman ER, Anderson GP, Lebedev N, Lingerfelt BM, Winter PT, Patterson CH, Mauro JM (2003) Anal Bioanal Chem 375:471–475Google Scholar
  20. 20.
    Cizek K, Prior C, Thammakhet C, Galik M, Linker K, Tsui R, Cagan A, Wake J, La Belle J, Wang J (2010) Anal Chim Acta 661:117–121CrossRefGoogle Scholar
  21. 21.
    Chen J-C, Shih J-L, Liu C-H, Liu C-H, Kuo M-Y, Zen J-M (2006) Anal Chem 78:3752–3757CrossRefGoogle Scholar
  22. 22.
    Chuang M-C, Windmiller JR, Santhosh P, Santhosh P, Ramirez GV, Galik M, Chou T-Y, Wang J (2010) Electroanalysis 22:2511–2518CrossRefGoogle Scholar
  23. 23.
    Caygill JS, Collyer SD, Holmes JL, Davis F, Higson S (2013) Analyst 138:346–352CrossRefGoogle Scholar
  24. 24.
    Hallam PM, Kampouris DK, Kadara RO, Banks CE (2010) Analyst 135:1947–1952CrossRefGoogle Scholar
  25. 25.
    Lee J, Murugappan K, Arrigan DWM, Silvester DS (2013) Electrochim Acta 101:158–168CrossRefGoogle Scholar
  26. 26.
    Montgomery DC (2009) Design and Analysis of Experiments, 7th edn. Wiley, New JerseyGoogle Scholar
  27. 27.
    Heyden YV, Hartmann C, Massart DL, Michel L, Kiechle P, Erni F (1995) Anal Chim Acta 316:15–26CrossRefGoogle Scholar
  28. 28.
    Fabre H, Mesplet N (2000) J Chromatogr A 897:329–338CrossRefGoogle Scholar
  29. 29.
    Cortada C, Vidal L, Canals A (2011) J Chromatogr A 1218:17–22CrossRefGoogle Scholar
  30. 30.
    Rabenecker P, Pinkwart K (2009) Propellants Explos Pyrotech 34:274–279CrossRefGoogle Scholar
  31. 31.
    Xiao C, Rehman A, Zeng X (2012) Anal Chem 84:1416–1424CrossRefGoogle Scholar
  32. 32.
    Zhang H-X, Cao A-M, Hu J-S, Wan L-J, Lee S-T (2006) Anal Chem 78:1967–1971CrossRefGoogle Scholar
  33. 33.
    Zang J, Guo CX, Hu F, Yu L, Li CM (2011) Anal Chim Acta 683:187–191CrossRefGoogle Scholar
  34. 34.
    Wang J, Hocevar SB, Ogorevc B (2004) Electrochem Commun 6:176–179CrossRefGoogle Scholar
  35. 35.
    Hrapovic S, Majid E, Liu Y, Male K, Luong J (2006) Anal Chem 78:5504–5512CrossRefGoogle Scholar
  36. 36.
    Shi G, Qu Y, Zhai Y, Liu Y, Sun Z, Yang J, Jin L (2007) Electrochem Commun 9:1719–1724CrossRefGoogle Scholar
  37. 37.
    Wang J, Pumera M (2006) Talanta 69:984–987CrossRefGoogle Scholar
  38. 38.
    Agüí L, Vega-Montenegro D, Yáñez-Sedeño P, Pingarrón JM (2005) Anal Bioanal Chem 382:381–387CrossRefGoogle Scholar
  39. 39.
    De Sanoit J, Vanhove E, Mailley P, Bergonzo P (2009) Electrochim Acta 54:5688–5693CrossRefGoogle Scholar
  40. 40.
    Tan SM, Chua CK, Pumera M (2013) Analyst 138:1700–1704CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elena Fernández
    • 1
  • Lorena Vidal
    • 1
    Email author
  • Jesús Iniesta
    • 2
  • Jonathan P. Metters
    • 3
  • Craig E. Banks
    • 3
  • Antonio Canals
    • 1
    Email author
  1. 1.Departamento de Química Analítica, Nutrición y Bromatología e Instituto Universitario de MaterialesUniversidad de AlicanteAlicanteSpain
  2. 2.Departamento de Química Física e Instituto Universitario de ElectroquímicaUniversidad de AlicanteAlicanteSpain
  3. 3.Faculty of Science and Engineering, Chemistry and Environmental ScienceManchester Metropolitan UniversityManchesterUK

Personalised recommendations