Analytical and Bioanalytical Chemistry

, Volume 405, Issue 27, pp 8769–8780

Mass spectrometric monitoring of Sr-enriched bone cements—from in vitro to in vivo

  • Marcus Rohnke
  • Anja Henss
  • Julia Kokesch-Himmelreich
  • Matthias Schumacher
  • Seemun Ray
  • Volker Alt
  • Michael Gelinsky
  • Juergen Janek
Research Paper


Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a well-established technique in materials science, but is now increasingly applied also in the life sciences. Here, we demonstrate the potential of this analytical technique for use in the development of new bone implant materials. We tracked strontium-enriched calcium phosphate cements, which were developed for the treatment of osteoporotic bone, from in vitro to in vivo. Essentially, the spatial distribution of strontium in two different types of strontium-modified calcium phosphate cements is analysed by SIMS depth profiling. To gain information about the strontium release kinetics, the cements were immersed for 3, 7, 14 and 21 days in α-MEM and tris(hydroxymethyl)-aminomethane solution and analysed afterwards by ToF-SIMS depth profiling. For cements stored in α-MEM solution an inhibited strontium release was observed. By using principal component analysis to evaluate TOF-SIMS surface spectra, we are able to prove the adsorption of proteins on the cement surface, which inhibit the release kinetics. Cell experiments with human osteoblast-like cells cultured on the strontium-modified cements and subsequent mass spectrometric analysis of the mineralised extracellular matrix (mECM) prove clearly that strontium is incorporated into the mECM of the osteoblast-like cells. Finally, in an animal experiment, the strontium-doped cements are implanted into the femur of osteoporotic rats. After 6 weeks, only a slight release of strontium was found in the vicinity of the implant material. By using ToF-SIMS, it is proven that strontium is localised in regions of newly formed bone but also within the pre-existing tissue.


Schematic illustration of the performed measurements.


Sr-enriched calcium phosphate cements Time-of-flight secondary ion mass spectrometry Osteoporosis Bone imaging Bone implant interface 

Supplementary material

216_2013_7329_MOESM1_ESM.pdf (789 kb)
ESM 1(PDF 788 kb)


  1. 1.
    Fletcher JS, Vickerman JC (2013) Secondary ion mass spectrometry: characterizing complex samples in two and three dimensions. Anal Chem 85(2):610–639. doi:10.1021/Ac303088m CrossRefGoogle Scholar
  2. 2.
    Rompp A, Guenther S, Schober Y, Schulz O, Takats Z, Kummer W, Spengler B (2010) Histology by mass spectrometry: label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew Chem Int Edit 49(22):3834–3838. doi:10.1002/anie.200905559 CrossRefGoogle Scholar
  3. 3.
    Klein K, Gigler AM, Aschenbrenne T, Monetti R, Bunk W, Jamitzky F, Morfill G, Stark RW, Schlegel J (2012) Label-free live-cell imaging with confocal Raman microscopy. Biophys J 102(2):360–368. doi:10.1016/j.bpj.2011.12.027 CrossRefGoogle Scholar
  4. 4.
    Schober Y, Guenther S, Spengler B, Rompp A (2012) Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem 84(15):6293–6297. doi:10.1021/Ac301337h CrossRefGoogle Scholar
  5. 5.
    Wu B, Becker JS (2011) Imaging of elements and molecules in biological tissues and cells in the low-micrometer and nanometer range. Int J Mass Spectrom 307(1–3):112–122. doi:10.1016/j.ijms.2011.01.019 Google Scholar
  6. 6.
    Vickerman JC, Briggs D, SurfaceSpectra Ltd (2001) ToF-SIMS: surface analysis by mass spectrometry. IM, ChichesterGoogle Scholar
  7. 7.
    Fletcher JS, Vickerman JC (2010) A new SIMS paradigm for 2D and 3D molecular imaging of bio-systems. Anal Bioanal Chem 396(1):85–104. doi:10.1007/s00216-009-2986-3 CrossRefGoogle Scholar
  8. 8.
    Rabbani S, Barber AM, Fletcher JS, Lockyer NP, Vickerman JC (2011) TOF-SIMS with argon gas cluster ion beams: a comparison with C-60(+). Anal Chem 83(10):3793–3800. doi:10.1021/Ac200288v CrossRefGoogle Scholar
  9. 9.
    Oshima S, Kashihara I, Moritani K, Inui N, Mochiji K (2011) Soft-sputtering of insulin films in argon-cluster secondary ion mass spectrometry. Rapid Commun Mass Spectrom 25(8):1070–1074. doi:10.1002/Rcm.4959 CrossRefGoogle Scholar
  10. 10.
    Borner K, Nygren H, Hagenhoff B, Malmberg P, Tallarek E, Mansson JE (2006) Distribution of cholesterol and galactosylceramide in rat cerebellar white matter. Bba-Mol Cell Biol L 1761(3):335–344. doi:10.1016/j.bbalip.2006.02.021 Google Scholar
  11. 11.
    Hagenhoff BB, Breitenstein D, Tallarek E, Möllers R, Niehuis E, Sperber M, Goricnik B, Wegener J (2013) Detection of micro- and nano-particles in animal cells by ToF-SIMS 3D analysis. Surf Interface Anal 45(1):315–319. doi:10.1002/sia.5141 CrossRefGoogle Scholar
  12. 12.
    Palmquist A, Emanuelsson L, Sjovall P (2012) Chemical and structural analysis of the bone-implant interface by TOF-SIMS, SEM, FIB and TEM: experimental study in animal. Appl Surf Sci 258(17):6485–6494. doi:10.1016/j.apsusc.2012.03.065 CrossRefGoogle Scholar
  13. 13.
    Henss A, Rohnke M, El Khassawna T, Govindarajan P, Schlewitz G, Heiss C, Janek J (2013) Applicability of ToF-SIMS for monitoring compositional changes in bone in a long-term animal model. J R Soc Interface 10(86):20130332. doi:10.1098/rsif.2013.0332 CrossRefGoogle Scholar
  14. 14.
    Rogers K, ebrary Inc (2010) Bone and muscle: structure, force, and motion. The human body. Britannica Educational Publishing, New YorkGoogle Scholar
  15. 15.
    Lau RY, Guo X (2011) A review on current osteoporosis research: with special focus on disuse bone loss. Journal of Osteoporosis 2011:293808. doi:10.4061/2011/293808
  16. 16.
    Marie PJ, Felsenberg D, Brandi ML (2011) How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporosis Int 22(6):1659–1667. doi:10.1007/s00198-010-1369-0 CrossRefGoogle Scholar
  17. 17.
    Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19(12):2012–2020. doi:10.1359/JBMR.040906 CrossRefGoogle Scholar
  18. 18.
    Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11(9):1302–1311. doi:10.1002/jbmr.5650110915 CrossRefGoogle Scholar
  19. 19.
    Schumacher M, Henss A, Rohnke M, Gelinsky M (2013) A novel and easy-to-prepare strontium(II) modified calcium phosphate bone cement with enhanced mechanical properties. Acta Biomater 9(7):7536–7544. doi:10.1016/j.actbio.2013.03.014 CrossRefGoogle Scholar
  20. 20.
    Schlewitz G, Govindarajan P, Schliefke N, Alt V, Bocker W, Elkhassawna T, Thormann U, Lips KS, Hemdan NY, Zahner D, Schnettler R, Heiss C (2013) Ovariectomy and calcium/vitamin D2/D3 deficient diet as a model of osteoporosis in the spine of Sprague–Dawley rats. Z Orthop Unfall 151(1):14–19. doi:10.1055/s-0032-1327976 CrossRefGoogle Scholar
  21. 21.
    Alt V, Thormann U, Ray S, Zahner D, Durselen L, Lips K, El Khassawna T, Heiss C, Riedrich A, Schlewitz G, Ignatius A, Kampschulte M, von Dewitz H, Heinemann S, Schnettler R, Langheinrich A (2013) A new metaphyseal bone defect model in osteoporotic rats to study biomaterials for the enhancement of bone healing in osteoporotic fractures. Acta Biomater 9(6):7035–7042. doi:10.1016/j.actbio.2013.02.002 CrossRefGoogle Scholar
  22. 22.
    Schumacher M, Lode A, Helth A, Gelinsky M (2013) A novel strontium(II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Acta Biomater. doi:10.1016/j.actbio.2013.07.027
  23. 23.
    Christoffersen J, Christoffersen MR, Kjaergaard N (1978) Kinetics of dissolution of calcium hydroxyapatite in water at constant pH. J Cryst Growth 43(4):501–511. doi:10.1016/0022-0248(78)90350-0 CrossRefGoogle Scholar
  24. 24.
    Lindahl C, Xia W, Lausmaa J, Engqvist H (2012) Incorporation of active ions into calcium phosphate coatings, their release behavior and mechanism. Biomed Mater 7 (4). doi: 10.1088/1748-6041/7/4/045018
  25. 25.
    Gustavsson J, Ginebra MP, Engel E, Planell J (2011) Ion reactivity of calcium-deficient hydroxyapatite in standard cell culture media. Acta Biomater 7(12):4242–4252. doi:10.1016/j.actbio.2011.07.016 CrossRefGoogle Scholar
  26. 26.
    Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30(12):2175–2179. doi:10.1016/j.biomaterials.2009.01.008 CrossRefGoogle Scholar
  27. 27.
    Graham DJ, Castner DG (2012) Multivariate analysis of ToF-SIMS data from multicomponent systems: the why, when, and how. Biointerphases 7 (1–4). doi: 10.1007/S13758-012-0049-3
  28. 28.
    Wagner MS, Castner DG (2001) Characterization of adsorbed protein films by time-of-flight secondary ion mass spectrometry with principal component analysis. Langmuir 17(15):4649–4660. doi:10.1021/La001209t CrossRefGoogle Scholar
  29. 29.
    Kokesch-Himmelreich J, Schumacher M, Rohnke M, Gelinsky M, Janek J (2013) ToF-SIMS analysis of osteoblast-like cells and their mineralized extracellular matrix on strontium enriched bone cements. Biointerphases 8(1):17. doi:10.1186/1559-4106-8-17 CrossRefGoogle Scholar
  30. 30.
    Petrovic A, Abramovic M, Mihailovic D, Gligorijevic J, Zivkovic V, Mojsilovic M, Ilic I (2011) Multicolor counterstaining for immunohistochemistry—a modified Movat’s pentachrome. Biotech Histochem 86(6):429–435. doi:10.3109/10520295.2010.528026 CrossRefGoogle Scholar
  31. 31.
    Sanni OD, Wagner MS, Briggs D, Castner DG, Vickerman JC (2002) Classification of adsorbed protein static ToF-SIMS spectra by principal component analysis and neural networks. Surf Interface Anal 33(9):715–728. doi:10.1002/sia.1438 CrossRefGoogle Scholar
  32. 32.
    Thormann U, Ray S, Sommer U, Elkhassawna T, Rehling T, Hundgeburth M, Henss A, Rohnke M, Janek J, Lips KS, Heiss C, Schlewitz G, Szalay G, Schumacher M, Gelinsky M, Schnettler R, Alt V (2013) Bone formation induced by strontium modified calcium phosphate cement in critical-size metaphyseal fracture defects in ovariectomized rats. Biomaterials 34(34):8589–8598. doi:10.1016/j.biomaterials.2013.07.036 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcus Rohnke
    • 1
  • Anja Henss
    • 1
  • Julia Kokesch-Himmelreich
    • 1
  • Matthias Schumacher
    • 2
  • Seemun Ray
    • 3
  • Volker Alt
    • 3
    • 4
  • Michael Gelinsky
    • 2
  • Juergen Janek
    • 1
  1. 1.Institute for Physical ChemistryJustus-Liebig-University of GiessenGiessenGermany
  2. 2.Centre for Translational Bone, Joint and Soft Tissue ResearchTechnische Universität DresdenDresdenGermany
  3. 3.Laboratory of Experimental Trauma SurgeryUniversity of GiessenGiessenGermany
  4. 4.Department of Trauma SurgeryUniversity Hospital of Giessen-MarburgGiessenGermany

Personalised recommendations