Advertisement

Analytical and Bioanalytical Chemistry

, Volume 405, Issue 28, pp 9071–9084 | Cite as

Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy

  • Natalia P. Ivleva
  • Susanne Huckele
  • Bernadett Weinzierl
  • Reinhard Niessner
  • Christoph Haisch
  • Thomas Baumann
Research Paper

Abstract

We present for the first time the Raman microspectroscopic identification and characterization of individual airborne volcanic ash (VA) particles. The particles were collected in April/May 2010 during research aircraft flights, which were performed by Deutsches Zentrum für Luft- und Raumfahrt in the airspace near the Eyjafjallajökull volcano eruption and over Europe (between Iceland and Southern Germany). In addition, aerosol particles were sampled by an Electrical Low Pressure Impactor in Munich, Germany. As references for the Raman analysis, we used the spectra of VA collected at the ground near the place of eruption, of mineral basaltic rock, and of different minerals from a database. We found significant differences in the spectra of VA and other aerosol particles (e.g., soot, nitrates, sulfates, and clay minerals), which allowed us to identify VA among other atmospheric particulate matter. Furthermore, while the airborne VA shows a characteristic Raman pattern (with broad band from ca. 200 to ca. 700 cm−1 typical for SiO2 glasses and additional bands of ferric minerals), the differences between the spectra of aged and fresh particles were observed, suggesting differences in their chemical composition and/or structure. We also analyzed similarities between Eyjafjallajökull VA particles collected at different sampling sites and compared the particles with a large variety of glassy and crystalline minerals. This was done by applying cluster analysis, in order to get information on the composition and structure of volcanic ash.

Figure

Images and Raman spectra of airborne volcanic ash

Keywords

Individual airborne particles Volcano Eyjafjallajökull Raman microspectroscopy (RM) Identification Characterization 

Notes

Acknowledgments

The authors thank Michael Haisch for providing the volcanic ash particles sampled at ground near the eruption.

Supplementary material

216_2013_7328_MOESM1_ESM.pdf (13.6 mb)
ESM 1 (PDF 13.5 MB)

References

  1. 1.
    Sigmundsson F, Hreinsdottir S, Hooper A, Arnadottir T, Pedersen R, Roberts MJ, Oskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ofeigsson BG, Sturkell E, Sveinbjoernsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajoekull explosive eruption. Nature 468:426–430CrossRefGoogle Scholar
  2. 2.
    Gislason SR, Hassenkam T, Nedel S, Bovet N, Eiriksdottir ES, Alfredsson HA, Hem CP, Balogh ZI, Dideriksen K, Oskarsson N, Sigfusson B, Larsen G, Stipp SLS (2011) Characterization of Eyjafjallajokull volcanic ash particles and a protocol for rapid risk assessment. Proc Natl Acad Sci U S A 108:7307–7312, S7307/7301-S7307/7303Google Scholar
  3. 3.
    Þorkelsson B, Karlsdóttir S, Gylfason ÁG, Höskuldsson Á, Brandsdóttir B, Ilyinskaya E, Gudmundsson MT, Högnadóttir Þ Report on the 2010 Eyjafjallaökull eruption, Island; Montreal, 13–15 June, 2012; pp 1–210, http://www.vedur.is/media/ICAOreport_web_lr.pdf
  4. 4.
    Schumann U, Weinzierl B, Reitebuch O, Schlager H, Minikin A, Forster C, Baumann R, Sailer T, Graf K, Mannstein H, Voigt C, Rahm S, Simmet R, Scheibe M, Lichtenstern M, Stock P, Rueba H, Schaeuble D, Tafferner A, Rautenhaus M, Gerz T, Ziereis H, Krautstrunk M, Mallaun C, Gayet JF, Lieke K, Kandler K, Ebert M, Weinbruch S, Stohl A, Gasteiger J, Gross S, Freudenthaler V, Wiegner M, Ansmann A, Tesche M, Olafsson H, Sturm K (2011) Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos Chem Phys 11:2245–2279CrossRefGoogle Scholar
  5. 5.
    Weinzierl B, Sauer D, Minikin A, Reitebuch O, Dahlkötter F, Mayer B, Emde C, Tegen I, Gasteiger J, Petzold A, Veira A, Kueppers U, Schumann U (2012) On the visibility of airborne volcanic ash and mineral dust from the pilot’s perspective in flight. J Phys Chem Earth 45–46:87–102Google Scholar
  6. 6.
    Gasteiger J, Gross S, Freudenthaler V, Wiegner M (2011) Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements. Atmos Chem Phys 11:2209–2223CrossRefGoogle Scholar
  7. 7.
    Schäfer K, Thomas W, Peters A, Ries L, Obleitner F, Schnelle-Kreis J, Birmili W, Diemer J, Fricke W, Junkermann W, Pitz M, Emeis S, Forkel R, Suppan P, Flentje H, Gilge S, Wichmann HE, Meinhardt F, Zimmermann R, Weinhold K, Soentgen J, Münkel C, Freuer C, Cyrys J (2011) Influences of the 2010 Eyjafjallajoekull volcanic plume on air quality in the northern Alpine region. Atmos Chem Phys 11:8555–8575CrossRefGoogle Scholar
  8. 8.
    Weber K, Eliasson J, Vogel A, Fischer C, Pohl T, van Haren G, Meier M, Grobety B, Dahmann D (2012) Airborne in-situ investigations of the Eyjafjallajoekull volcanic ash plume on Iceland and over north-western Germany with light aircrafts and optical particle counters. Atmos Environ 48:9–21Google Scholar
  9. 9.
    McCreery RL (2000) Raman spectroscopy for chemical analysis. Wiley, New York, pp 15–35CrossRefGoogle Scholar
  10. 10.
    Ivleva NP, McKeon U, Niessner R, Pöschl U (2007) Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: soot, humic-like substances, and inorganic compounds. Aerosol Sci Technol 41:655–671CrossRefGoogle Scholar
  11. 11.
    Casadevall TJ Volcanic hazards and aviation safety: lessons of the past decade, Flight Safety Foundation–Flight Safety Digest; May, 1993; pp 1–9, http://www.caa.co.uk/docs/375/fsd_may93_p1-9.pdf
  12. 12.
    R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-Project.org/
  13. 13.
    Morhac M, Kliman J, Matousek V, Veselsky M, Turzo I (1997) Efficient one- and two-dimensional gold deconvolution and its application to gamma-ray spectra decomposition. Nucl Instrum Methods Phys Res, Sect A 401:385–408CrossRefGoogle Scholar
  14. 14.
    Morhac M, Kliman J, Matousek V, Veselsky M, Turzo I (1997) Background elimination methods for multidimensional coincidence gamma-ray spectra. Nucl Instrum Methods Phys Res, Sect A 401:113–132CrossRefGoogle Scholar
  15. 15.
    Morhac M, Kliman J, Matousek V, Veselsky M, Turzo I (2000) Identification of peaks in multidimensional coincidence gamma-ray spectra. Nucl Instrum Methods Phys Res, Sect A 443:108–125CrossRefGoogle Scholar
  16. 16.
    Kaufman L, Rousseeuw PJ (1990) Finding groups in data. An introduction to cluster analysis. Wiley, New YorkCrossRefGoogle Scholar
  17. 17.
    Lin C-C, L-g L (2006) Composition dependence of elasticity in aluminosilicate glasses. Phys Chem Miner 33:332–346CrossRefGoogle Scholar
  18. 18.
    Zotov N (2003) Structure of natural volcanic glasses: diffraction versus spectroscopic perspective. J Non-Cryst Solids 323:1–6CrossRefGoogle Scholar
  19. 19.
    Sobanska S, Hwang H, Choel M, Jung H-J, Eom H-J, Kim H, Barbillat J, Ro C-U (2012) Investigation of the chemical mixing state of individual Asian dust particles by the combined use of electron probe X-ray microanalysis and Raman microspectrometry. Anal Chem 84:3145–3154CrossRefGoogle Scholar
  20. 20.
    Ivleva NP, Niessner R, Panne U (2005) Characterization and discrimination of pollen by Raman microscopy. Anal Bioanal Chem 381:261–267CrossRefGoogle Scholar
  21. 21.
    Rösch P, Harz M, Schmitt M, Peschke K-D, Ronneberger O, Burkhardt H, Motzkus H-W, Lankers M, Hofer S, Thiele H, Popp J (2005) Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol 71:1626–1637CrossRefGoogle Scholar
  22. 22.
    Rull F, Martinez-Frias J, Rodriguez-Losada JA (2007) Micro-Raman spectroscopic study of El Gasco pumice, western Spain. J Raman Spectrosc 38:239–244CrossRefGoogle Scholar
  23. 23.
    Farwell SO, Gage DR (1981) Crystalline silica in Mount St. Helens ash. Anal Chem 53:1529A-1530A, 1532AGoogle Scholar
  24. 24.
    Gage DR, Farwell SO (1981) Laser Raman spectrometry for the determination of crystalline silica polymorphs in volcanic ash. Anal Chem 53:2123–2127CrossRefGoogle Scholar
  25. 25.
    Ishizaki H, Tu AT (1982) Laser Raman spectroscopic analysis of Mount St. Helens [Washington] ash from the May 18, 1980 eruption. J Environ Sci 25:32–33Google Scholar
  26. 26.
    Ishizaki H, Tu AT (1982) Laser Raman spectroscopic analysis of volcanic ash from Mt. Sakurajima in Japan. Appl Spectrosc 36:587–588CrossRefGoogle Scholar
  27. 27.
    de Faria DLA, Silva SV, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  28. 28.
    Popp J, Tarcea N, Kiefer W, Hilchenbach M, Thomas N, Stuffler T, Hofer S, Stoffler D, Greshake A (2002) The effect of surface texture on the mineralogical analysis of chondritic meteorites using Raman spectroscopy. Planet Space Sci 50:865–870CrossRefGoogle Scholar
  29. 29.
    Edwards HGM, Farwell DW, De Faria DLA, Monteiro AMF, Afonso MC, De Blasis P, Eggers S (2001) Raman spectroscopic study of 3000-year-old human skeletal remains from a sambaqui, Santa Catarina, Brazil. J Raman Spectrosc 32:17–22CrossRefGoogle Scholar
  30. 30.
    Bersani D, Lottici PP, Montenero A (1999) Micro-Raman investigation of iron oxide films and powders produced by sol–gel syntheses. J Raman Spectrosc 30:355–360CrossRefGoogle Scholar
  31. 31.
    Muralha VSF, Rehren T, Clark RJH (2011) Characterization of an iron smelting slag from Zimbabwe by Raman microscopy and electron beam analysis. J Raman Spectrosc 42:2077–2084CrossRefGoogle Scholar
  32. 32.
    van der Weerd J, Rehren T, Firth S, Clark RJH (2004) Identification of iron oxide impurities in earliest industrial-scale processed platinum. Mater Charact 53:63–70CrossRefGoogle Scholar
  33. 33.
    Leon Y, Lofrumento C, Zoppi A, Carles R, Castellucci EM, Sciau P (2010) Micro-Raman investigation of terra sigillata slips: a comparative study of central Italian and southern Gaul productions. J Raman Spectrosc 41:1260–1265CrossRefGoogle Scholar
  34. 34.
    Mernagh TP (1991) Use of the laser Raman microprobe for discrimination amongst feldspar minerals. J Raman Spectrosc 22:453–457CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Natalia P. Ivleva
    • 1
  • Susanne Huckele
    • 1
  • Bernadett Weinzierl
    • 2
  • Reinhard Niessner
    • 1
  • Christoph Haisch
    • 1
  • Thomas Baumann
    • 1
  1. 1.Institute of Hydrochemistry, Chair for Analytical ChemistryTechnische Universität MünchenMunichGermany
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt (DLR)Institut für Physik der AtmosphäreOberpfaffenhofenGermany

Personalised recommendations